Learning DAGs from Data with Few Root Causes

Panagiotis Misiakos, Chris Wendler and Markus Püschel

Department of Computer Science

Motivation: Pollution on a river network

measurement

Few cities pollute CNegligible pollution by others N_c Measurement of accumulated pollution ${f X}$ Measurement noise ${f N}_x$

Follows a linear structural equation model (SEM)

 $\begin{aligned} & \mathbf{x} = (\mathbf{C} + \mathbf{N}_c) \left(\mathbf{I} + \mathbf{A} + \dots + \mathbf{A}^{d-1} \right) + \mathbf{N}_x \Leftrightarrow \\ & \mathbf{X} = \mathbf{X}\mathbf{A} + (\mathbf{C} + \mathbf{N}_c) + \mathbf{N}_x \left(\mathbf{I} - \mathbf{A} \right) \end{aligned}$

Goal: Given X, learn the DAG ${\rm A}$

Goal: Learn DAG from Data with Few Root Causes

Our work: SparseRC = Finding the DAG A *by solving*

$$\min_{\mathbf{A}\in\mathbb{R}^{d\times d}} \left\| \mathbf{X} \left(\mathbf{I} + \overline{\mathbf{A}} \right)^{-1} \right\|_{1} + \lambda \|\mathbf{A}\|_{1} \quad \text{s.t. tr} \left(e^{\mathbf{A}\odot\mathbf{A}} \right) = 0$$
Few root causes
$$\int_{\mathbf{Few root causes}} \int_{\mathbf{Sparse DAG}} \int_{\mathbf{Acyclicity constraint NOTEARS [Zheng et. al., 2018]} \left(\mathbf{Acyclicity constraint NOTEARS [Zheng et. al., 2018]} \right)$$

Excellent reconstruction if assumptions are fulfilled + 10-50x faster

Reconstruction (SHD)

	Hyperparameter	Default	Change	SparseRC (ours)	GOLEM	NOTEARS
1	Default settings			0.6 ± 0.8	82 ± 34	59 ± 22
2	Graph type	Erdös-Renyi	Scale-free	2.2 ± 1.5	34 ± 9.0	28 ± 9.5
3	$\mathbf{N}_c, \mathbf{N}_x$ distribution	Gaussian	Gumbel	1.4 ± 1.0	87 ± 44	59 ± 17
4	Edges / Vertices	4	10	46 ± 7.5	212 ± 70	243 ± 26
5	Standardization	No	Yes	624 ± 48	failure	failure
6	Larger weights in ${f A}$	(0.1, 0.9)	(0.5, 2)	failure	96 ± 25	92 ± 14
7	$\mathbf{N}_c, \mathbf{N}_x$ deviation	$\sigma = 0.01$	$\sigma = 0.1$	504 ± 19	98 ± 14	199 ± 12
8	Dense root causes ${\bf C}$	p = 0.1	p = 0.5	1221 ± 33	29 ± 2.5	126 ± 32
9	Samples	n = 1000	n = 100	2063 ± 92	failure	failure
10	Fixed support	No	Yes	failure	failure	failure

Also benchmarked but not competitive

DAGMA DirectLiNGAM PC GES LiNGAM CAM DAG-NoCurl fGES sortnregress MMHC

Scalability to larger DAGs (~1000s of nodes)

Nodes d , samples n S	parseRC	NOTEARS	GOLEM
d = 200, n = 500	22	155	281
d = 500, n = 1000	27	245	574
d = 1000, n = 5000	26	282	699
d = 2000, n = 10000	50	489	time-out
d = 3000, n = 10000	134	time-out	time-out

SparseRC effectively reconstructs the weights

SparseRC ranked 3rd in the CausalBench challenge at ICLR 2023 [Chevalley et. al., 2023]