Learning Signals and Graphs from Time-series Graph Data with Few Causes

Panagiotis Misiakos, Vedran Mihal and Markus Püschel

Department of Computer Science

Time-series data on graphs

Graph signal:
$$\mathbf{x} = (x_1, ..., x_d)^T$$

Time-constant (stationary) graph

Time-series graph data: $\mathbf{x}(t), t = 1, 2, ..., T$ Time series: $\overline{\mathbf{x}} = (\mathbf{x}(1), \mathbf{x}(2), ..., \mathbf{x}(T))^T$ Collected in matrix: $\mathbf{X} = (\overline{\mathbf{x}}_1, \overline{\mathbf{x}}_2, ..., \overline{\mathbf{x}}_n)$

Time series: $\overline{\mathbf{x}} = (\mathbf{x}(1), \mathbf{x}(2), ...) = (26.7, 239.6, 143.1, 89.7, 125.1, 27.7, 229.1, 147.5, 88.7, 126.4, ...)^T$ Collected time series: e.g. for 5 years $\mathbf{X} = (\overline{\mathbf{x}}_1, \overline{\mathbf{x}}_2, \overline{\mathbf{x}}_3, \overline{\mathbf{x}}_4, \overline{\mathbf{x}}_5)$

Contributions

1. Signal learning

Sampling and reconstruction: smoothness or Fourier sparsity [Xiao et. al., 2023]

2. Graph learning

Learn the graph **B** from n time series $\mathbf{X} = (\overline{\mathbf{x}}_1, \overline{\mathbf{x}}_2, ..., \overline{\mathbf{x}}_n)$

Graph learning: smoothness or Fourier sparsity [Dong et. al., 2016, Humbert et. al., 2021] **Learning DAGs** (directed acyclic graphs) [Zheng et. al., 2018]

Key idea: Import methods from causal inference on DAGs

Time series of Graphs = Directed Acyclic Graph (DAG)

[Kim and Anderson, 2012]

 $\begin{array}{l} \text{Time-series model:} & \left\{ \begin{aligned} \mathbf{x}(1) = \mathbf{c}(1) & \textbf{structural shocks or "causes"} \\ \mathbf{x}(t) = \mathbf{B}\mathbf{x}(t-1) + \mathbf{c}(t), \ t = 2, ..., T \end{aligned} \right. \Leftrightarrow \quad \overline{\mathbf{x}} = \mathbf{A}\overline{\mathbf{x}} + \overline{\mathbf{c}} \end{array}$

Linear structural equation model (machine learning with DAGs)

Vector autoregression (signal processing – econometrics)

Idea: We learn B (graph) by learning the entire A (DAG) and then extracting B

Few Causes

Causal basis matrix

Assumption: $\overline{\mathbf{x}}$ is determined by (approximately) few causes = $\overline{\mathbf{c}}$ is sparse ... is a form of Fourier sparsity [Seifert et. al., 2021]

S&P stock example

Causes $\overline{\mathbf{c}}$: financial triggers (new product introduction, change in management)

Time series $\overline{\mathbf{x}} = \mathbf{W}\overline{\mathbf{c}}$: stock value

Proposed methodologies

1. Signal learning

Reconstruct entire time series $\overline{\mathbf{x}}$ from *K* samples $\Phi_K \overline{\mathbf{x}}$

Solution: Lasso regression

$$\hat{\overline{\mathbf{x}}} = \mathbf{W} \cdot \operatorname*{arg\,min}_{\overline{\mathbf{c}}} \frac{1}{2K} \| \mathbf{\Phi}_K \overline{\mathbf{x}} - \mathbf{\Phi}_K \mathbf{W} \overline{\mathbf{c}} \|_2^2 + \lambda \| \overline{\mathbf{c}} \|_1$$
Few causes

W is our causal (Fourier) basis

Can be replaced by other notions of Fourier bases (adjacency, Laplacian)

2. Graph learning

Learn the weighted graph **B** from ntime series $\mathbf{X} = (\overline{\mathbf{x}}_1, \overline{\mathbf{x}}_2, ..., \overline{\mathbf{x}}_n)$

Solution: DAG Learning

$$\hat{\mathbf{A}} = \underset{\mathbf{A} \in \mathbb{R}^{dT \times dT}}{\operatorname{arg\,min}} \|\mathbf{X} - \mathbf{X}\mathbf{A}\|_{1} + \lambda \|\mathbf{A} - \mathbf{P}\mathbf{A}\mathbf{Q}\|_{2}$$
Few causes
Block diagonal
Block diagonal

s.t. $\operatorname{tr}(e^{\mathbf{A} \odot \mathbf{A}}) = 0$ **Acyclicity constraint**

From $\hat{\mathbf{A}}$ we extract $\hat{\mathbf{B}}$ as the first block

Problem 1: Learning signal from samples

Settings

20 nodes, 50 time steps = Unrolled DAG with 1000 nodes

10 time series, 5% sparsity in the causes

Comparison

Reconstruction with other Fourier bases Signal to noise ratio (**SNR**) as metric

Results

Best reconstruction using **our** basis Signal is not sparse w.r.t. other bases

Problem 2: Learning the graph from data

Settings

Similar as Problem 1

Comparison

Graph learning and DAG learning methods

SHD metric (Structural Hamming distance) lower is better

Results

Our method fits best the data generation (few causes) assumption.

A real world scenario: Thames river dataset

Settings

Graph: river network (unweighted), 13 nodes **Data:** 7 time series, 49 time steps

Prototypical application

(Graph & signal learning)

- 1. Compute weights (uses all data)
- 2. Signal reconstruction (sampled data) using weighted causal basis

Results

Best reconstruction (compression) using **causal basis**

1. Time-series graph data

\mathbf{V}	
$\mathbf{\Lambda}$	

Date	INTC	MSFT	NVDA	GOOG	AAPL
2023-01-03	26.7	239.6	143.1	89.7	125.1
2023-01-04	27.7	229.1	147.5	88.7	126.4
2023-01-05	27.6	222.3	142.6	86.8	125.0
2023-01-06	28.7	224.9	148.6	88.2	129.6
2023-01-09	29.3	227.1	156.3	88.8	130.1

Time = causal order

2. Unrolled into DAG

Impose Few causes C assumption 3. Few-cause signal reconstruction

 $\hat{\mathbf{x}} = \mathbf{W} \cdot \operatorname*{arg\,min}_{\mathbf{c}} \frac{1}{2K} \| \mathbf{\Phi}_K \mathbf{x} - \mathbf{\Phi}_K \mathbf{W} \mathbf{c} \|_2^2 + \lambda \| \mathbf{c} \|_1$

4. Import DAG learning methods from ML to do graph learning

 $\hat{\mathbf{A}} = \arg\min_{\mathbf{A} \in \mathbb{R}^{dT \times dT}} \|\mathbf{X} - \mathbf{X}\mathbf{A}\|_{1} + \lambda \|\mathbf{A} - \mathbf{P}\mathbf{A}\mathbf{Q}\|_{2}$

$$= \begin{pmatrix} 0 & 0 & \dots & 0 & 0 \\ B & 0 & \dots & 0 & 0 \\ \vdots & B & \ddots & \vdots & \vdots \\ \vdots & \ddots & 0 & \vdots \\ 0 & 0 & \dots & B & 0 \end{pmatrix}$$
Learn the entire A and ther extract E

A