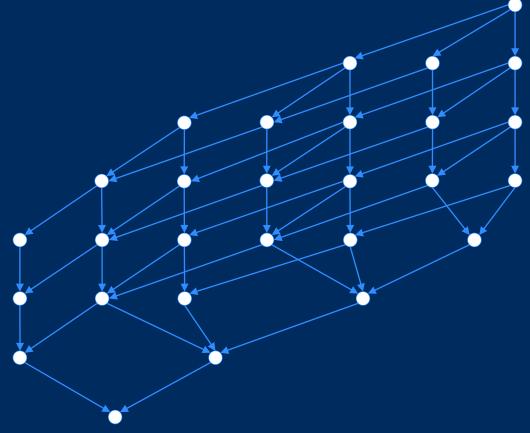
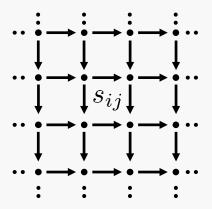
Sampling Signals on Meet/Join Lattices

Chris Wendler and Markus Püschel

Computer Science **ETH** zürich

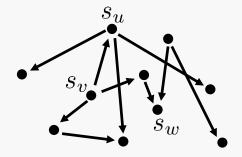


Classical DSP



Signals indexed by time/space

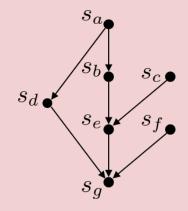
Graph DSP



Signals indexed by nodes of a graph

Shumann 2012 Sandryhaila 2013

New Discrete Lattice SP



Signals indexed by a meet/join lattice Instantiation of algebraic signal processing theory

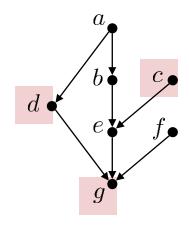
ICASSP 2019

Goal

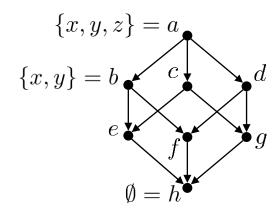
shift, convolution/filtering, Fourier transform, frequency response, sampling, for lattice signals

Meet Semilattice

Finite set L with **partial order** \leq and **meet operation** $x \wedge y$ (greatest lower bound)



For example, $c \wedge d = g$



Powerset Lattice

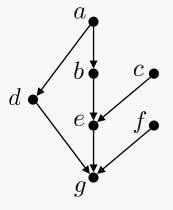
Partial order \subseteq , meet \cap

Join Semilattice

Analogous

Discrete Lattice Signal Processing

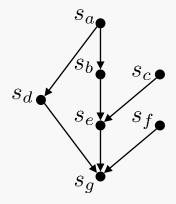
Lattice



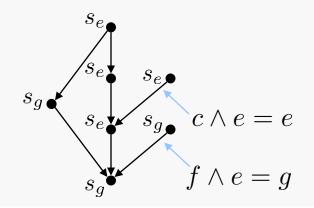
Shift(s) by $q \in L$

$$T_q \mathbf{s} = (s_{x \wedge q})_{x \in L}$$

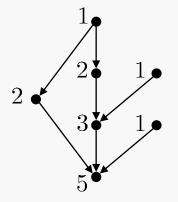
Signal $\mathbf{s} = (s_x)_{x \in L} \in \mathbb{R}^n$



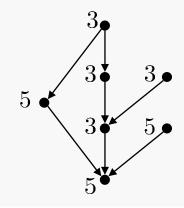
Shifted Signal (by e)



Concrete Example



 T_e s Shifted Example (by e)



Filters: Linear Shift Invariant Systems

Shift(s) by
$$q \in L$$

 $T_q \mathbf{s} = (s_{x \wedge q})_{x \in L}$

Convolution

$$\mathbf{h} * \mathbf{s} = \left(\sum_{q \in L} h_q s_{x \wedge q}\right)_{x \in L}$$

Filter $\mathbf{h} = (h_q)_{q \in L}$ indexed by Shift Invariance \checkmark

Fourier Transform diagonalizes all shifts and filters

$$\widehat{s}_y = \sum_{x \leq y} \mu(x,y) s_x \qquad \mu(x,x) = 1, \text{ for } x \in L$$

$$\uparrow \qquad \qquad \text{indexed by lattice} \qquad \mu(x,y) = -\sum_{x \leq z < y} \mu(x,z),$$

$$\text{for } x \neq y$$

Pure Frequencies eigenvectors of all filters

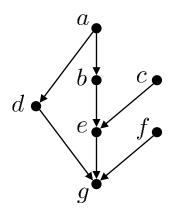
$$\mathbf{f}^{y} = (\iota_{y \leq x})_{x \in L}, \quad y \in L$$
characteristic function

Frequency response eigenvalues

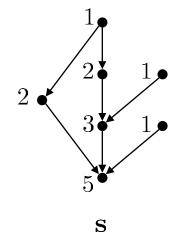
$$\overline{h}_y = \sum_{q \in L, \ y \le q} h_q$$

Algebraic Lattice Theory

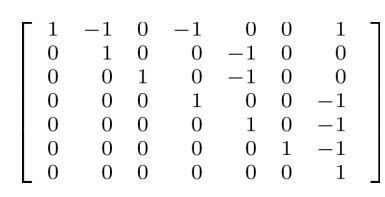
Lattice



Signal

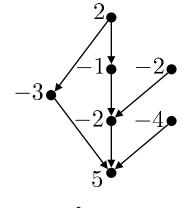


Fourier transform



F

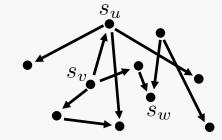
Spectrum



Comparison Graph DSP

Graph DSP

Signals indexed by vertices of a graph



Shift captures adjacency structure

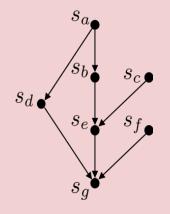
One generating shift

(adjacency or Laplacian)

Shift not always diagonalizable (digraphs)

New Discrete Lattice SP

Signals indexed by a meet/join lattice = special type of graph



Shifts capture partial order structure

Several generating shifts (one per 'maximal' element)

Shifts always diagonalizable

Sampling Signals on Meet/Join Lattices

 F^{-1} $\hat{\mathbf{S}}$ \mathbf{S} **Sampling Theorem:** A Fourier sparse signal s with known support supp($\hat{\mathbf{s}}$) = $B = \{b_1, \dots, b_k\}$ can be reconstructed from the samples $s_B = (s_b)_{b \in B}$. Formally, we have $s = F_{L,B}^{-1} (F_{B,B}^{-1})^{-1} s_B$. \mathbf{S}_B solve linear system of equations $F_{B,B}^{-1}$

Application 1: Genotype-Phenotype Mappings (HIV RT)

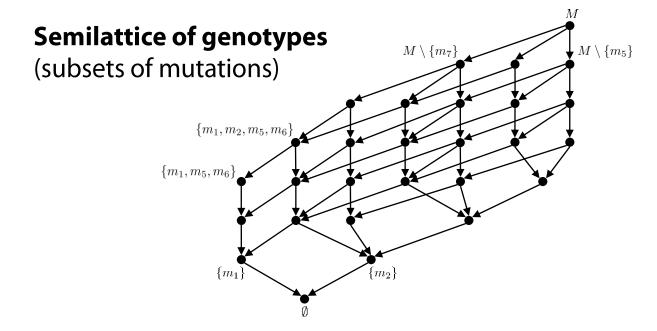
Gene

...GAGAACTTAATAAGAAAACTCAAGA...

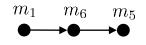
set of mutations

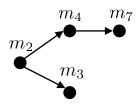
Genotype

...GAGAGCTTAATAAGACAACTCAAGA...



Constraints on mutations





$$M = \{m_1, m_2, m_3, m_4, m_5, m_6, m_7\}$$

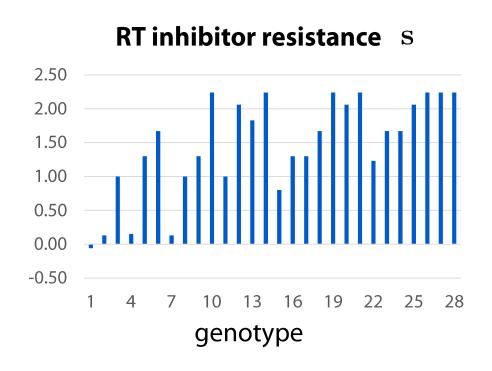
Signal
$$s_{\emptyset} = 0$$

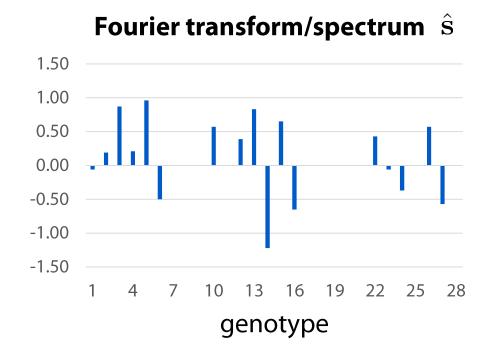
 $s_{\{m_1\}} = 0.15$
 $s_{\{m_2\}} = 0.13$
 $s_{\{m_1, m_5, m_6\}} = 1.23$
 $s_{\{m_1, m_2, m_5, m_6\}} = 1.67$
 $s_{M\setminus\{m_5\}} = 2.14$
 $s_{M\setminus\{m_7\}} = 2.14$

 $s_M = 2.14$

RT inhibitor resistance

Application 1: Genotype-Phenotype Mappings (HIV RT)

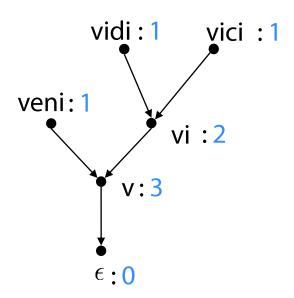




Application 2: Document Representation

Lattice = **prefix lattice of words**

Signal = prefix count signal



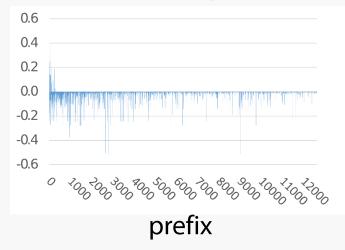
For example: 'veni vidi vici'

Kritik der reinen Vernunft (Kant 1781)

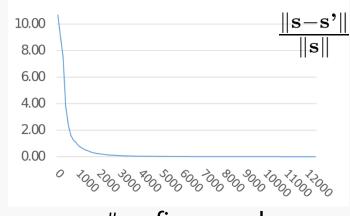
9,952 unique words

12,636 prefixes (lattice)

Prefix count spectrum $\hat{\mathbf{S}}$



Relative reconstruction error



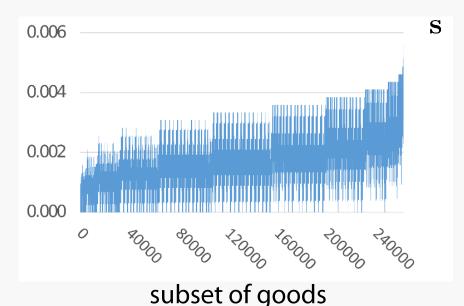
#prefixes used

Application 3: Combinatorial Auctions

Spectrum Auction

goods = bands of electromagnetic spectrum bidders = valuation functions $v_i: 2^M \to \mathbb{R}^+$

Bidder valuation function



lattice = powerset, signal = valuation function GSVM auction 18 goods \rightarrow 2¹⁸ valuations/bidder

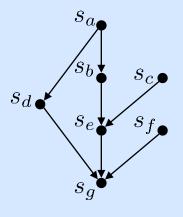
Goeree and Holt (2010)

Fourier transform/spectrum

subset of goods

possible application: preference elicitation

Lattice DSP



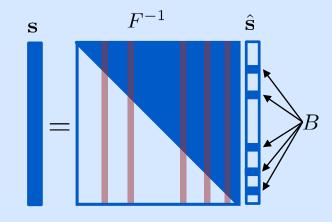
Convolution

$$\mathbf{h} * \mathbf{s} = \left(\sum_{q \in L} h_q s_{x \wedge q} \right)_{x \in L}$$

Fourier Transform

$$\widehat{s}_y = \sum_{x \le y} \mu(x, y) s_x$$

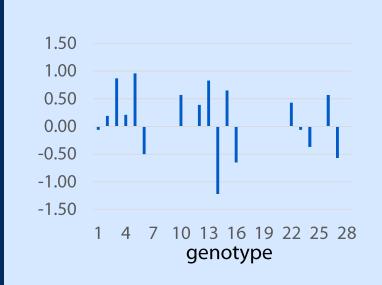
Sampling



$$\mathbf{s} = F_{L,B}^{-1}(F_{B,B}^{-1})^{-1}\mathbf{s}_B$$

reconstruct signal from |B| samples

Possible Applications



- 1. Genotype-phenotype maps
- 2. Document representation
- 3. Set functions (e.g., valuations)
- 4. Powerset Convolutional Neural Network (NeurIPS 2019)