ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Compiler Flag Optimization using
Fourier-sparse Poset Functions

Master Thesis

Tierry Hormann

May 2, 2022

Advisors: Prof. Dr. M. Puschel, Chris Wendler

Department of Computer Science, ETH Ziirich

Abstract

Automatic compiler optimizations play an important part in the devel-
opment process of most programmers concerned about the runtime of
their application. While modern compilers ship hundreds of optimiza-
tion heuristics which can be individually configured during compila-
tion with optimization flags, most users resort to using standard opti-
mization levels such as -O3 for their programs. Such optimization lev-
els provide preconfigured default optimization pipelines handcrafted
by compiler experts with the goal of working well for every kind of
program. While it has been shown that program specific pipelines can
improve the runtime of a program considerably, it is a difficult task to
find such a good configuration by hand. In this thesis we will present a
supervised learning approach for finding good optimization flag com-
binations, where we are concerned about both a good selection and
a good order of the flags. We tackle this task by using linear regres-
sion for finding a Fourier-sparse approximation of a function mapping
optimization flag combinations to their resulting runtimes. We show
that our approximations fit well on unseen data randomly sampled
from the optimization space. Minimization of the Fourier-sparse ap-
proximation provides us with new flag combinations which perform
comparably well to the highest optimization level of LLVM, showing
that our theoretical basis has potential when applied to the problem of
compiler flag optimizations. Our methods work well on medium two-
figured number of flags and have the potential to scale even higher.

ii

Abstract

Automatische Compiler Optimierungen spielen eine grosse Rolle im
tagtaglichen Entwicklungsprozess der meisten Entwicklern die bedacht
tiber die Laufzeit ihrer Programme sind. Wé&hrend moderne Com-
piler hunderte Optimierungsheutistiken mitpacken, die individuell mit
Optimierungsflags eingestellt werden kénnen, weichen trotzdem die
meisten Nutzer auf standard Optimierungslevels wie -O3 aus um ihre
Programme zu kompilieren. Diese Optimierungslevels stellen prekon-
figurierte Optimierungspipelines zur verfiigung, welche von Compil-
erexperten von Hand zusammengestellt wurden um die Laufzeit be-
liebiger Programme moglichst effektiv zu reduzieren. Eine eigene ef-
fektive programmspezifische Pipeline zu konfigurieren stellt sich als
schwierige Aufgabe heraus und wird kaum angewendet, obwohl bere-
its mehrfach gezeigt wurde, dass damit die Laufzeit teilweise erhe-
blich reduziert werden kann. In dieser Arbeit stellen wir ein Machine-
Learning-Modell vor, das mittels {iberwachtem Lernen gute Kombina-
tionen an Optimierungsflags findet. Dabei betrachten wir sowohl die
Auswahl, als auch die Ordnung der Flags. Wir gehen dieses Prob-
lem an indem wir mittels linearer Regression eine fourier-sparse Ap-
proximation einer Funktion lernen, welche Kombinationen an Opti-
mierungsflags zu ihrer Laufzeit abbildet. Wir zeigen dass wir mit un-
serem Ansatz gute Approximationen finden, die prazise die Laufzeit
von noch nicht beobachteten, zufillig ausgewdhlten Flagkombinatio-
nen voraussagt. Durch Minimierung der Fourier-sparsen Approxi-
mation konnen wir neue Flagkombinationen kreieren, die mit dem
hochsten Optimierungslevel von LLVM konkurrieren konnen, was zeigt
dass unsere allgemeine Methodik Potential hat in der Anwendung auf
das Compiler-Flag Optimierungsproblem. Unsere Methoden funktion-
ieren gut auf einer mittleren zweistelligen Anzahl an Flags und zeigen
Potential, dass sie auf noch grossere Anzahlen hoch skalieren kénnen.

Contents

Contents

1

Introduction

1.1 Motivation

1.2 Related Work

13 Background L.
1.3.1 Fourier Analysis on discrete domains
1.3.2 Permutations

A Poset of Optimizations
21 Thedomain
22 Partial Order

23 Covering Relation

Learning Fourier-sparse Poset Functions

31 Overview
3.2 Linear Regression and Sparse Approximation
3.3 Computing maximally correlated columns
3.4 Minimizing the Fourier-Sparse Function.
3.5 Speeding up the Enumeration.
3.6 Selecting the Training Set

Approximate Poset Enumeration
41 Delta-Approximate Enumeration
4.2 Monte Carlo TreeSearch

Implementation and Experimental Setup

51 SetupandUsage
511 ExampleUsage

5.2 Runtime Measurement Setup

5.3 Machine Learning Algorithms

iii

N NG N U R

o clNe Sl NEEN|

13

13
16
22
24
26

31
31
32

35
35
36
37
38

ii

CONTENTS

iv

6 Results

7 Conclusion and Future Work

7.1 Limitations and Future Work . . .

A Appendix

A.1 Proof of proposition 2.3 (partial order)
A.2 Proof of proposition 3.2 (total order)

A.3 Selection of Benchmark Programs

Bibliography

41

47
47

49
49
49
50

51

Chapter 1

Introduction

In this chapter we will give an introduction into the main problem we will
tackle. We start by giving some motivation for posing our problem and
introduce some basic notion which we will use throughout this thesis. Fur-
thermore, we will present a brief summary over the related work in this
chapter.

1.1 Motivation

Compiler provided optimizations are powerful tools integrated in every
common modern compiler. They are capable of speeding up a program
for a very minor cost in compile time. For many programs this cost is negli-
gible, and therefore most developers rely heavily on the usage of the built-in
optimizer to speed up their code. Modern compilers, such as GCC or clang,
implement optimizations as multiple independent heuristics, being applied
over some abstract representation of the code. For example, both GCC and
clang implement an optimization which replaces constant expressions di-
rectly with their value if it can be calculated at compile time. To control
those optimizations, command-line flags are usually provided. While those
flags can have different forms, we focus on boolean flags in this thesis, which
can simply turn specific optimizations on or off. With the improvements of
the compilers over the years, more and more optimizations have become
available over the recent years, with GCC 11 now providing 252 optimiza-
tion flags and clang 13 a total of 316 analysis and transform passes. ! Such a
number of optimizations makes it infeasible for most developers to keep an
overview and be able to effectively use the available optimization options for
their use-case. As a countermeasure, compiler developers are now provid-
ing default optimization pipelines for different optimization levels, which are

INumber of optimizations available from the output of gcc --help=optimizers for GCC
and opt --print-passes for clang / LLVM

1. INTRODUCTION

mainly used by developers nowadays. For both GCC and clang, the highest
optimization level in terms of performance can be activated with the -03
flag. Unfortunately, this default pipeline is often suboptimal for a specific
program.

In this thesis our goal is to find a good custom optimization pipeline for
a fixed program with a given input, where an optimization pipeline is an
ordered sequence of optimization flags. We approach this task in three steps.
First we define a novel poset which mathematically represents our space of
optimization flag sequences. We can then mathematically express the effect
of an optimization flag sequence to the runtime of a program as a function
with our poset as its domain, which we will call the target function. We
can then derive a Fourier transform for this domain by using preexisting
theory [27]. Based on this Fourier transform, our next step will be to learn
an approximation of our function, which will be sparse in the Fourier space.
By sparse we mean that most of the Fourier coefficients will be zero. We
will see that we can learn such an approximation by directly learning the
non-zero Fourier coefficients. Finally, we can minimize our Fourier-sparse
approximation and return the minimizer.

Our approach takes both the selection of flags and their order into consider-
ation. Previous research has showed that naively enabling all optimizations
is often suboptimal. Due to their heuristic nature, some optimizations might
degrade the performance of a program, as previous research shows [30, 12].
The problem of choosing such an optimal subset from the available set of
optimization flags has been referred to as the selection problem in literature.

But not only finding a good subset is of importance, choosing the right or-
der in which they should be executed is also relevant. The intuition is that,
since a compiler optimization transforms the code, executing a flag might
enable or disable some subsequent optimizations. We can see this effect
with a small experiment. For a given benchmark program let’s select 10
optimization flags and use them to form a set of pairs between all those
selected flags. We can then measure the runtime of the program for every
pair of flags twice by first ordering them as they appear in -03 and after-
wards in reversed order. Figure 1.1 shows a comparison between those two
runtimes, where we plotted the relative improvement of the reversed order
compared to the order in -03. We can see that with this simple method, we
can improve our runtime by up to roughly 15%. The problem of finding an
optimal flag order for a given selection of flags is called the phase-ordering
problem in literature. It is well known that there is no general optimal or-
der for a selection of optimizations, and there have been multiple efforts to
tackle phase-ordering for optimization flags [10].

1.2. Related Work

Relative Improvement
'

0.15 A

0.10 A

0.05 +

0.00 1 Lt

—0.05

—0.10 A

Figure 1.1: The relative runtime improvement between pairs of optimization flags.

1.2 Related Work

The general problem of compiler optimizations, also referred to as compiler
autotuning, has been around for several decades [1] and has been tackled
with machine learning since the late 90’s [16]. The majority of previous work
in this field of research uses iterative compilation techniques, where the pro-
gram is iteratively compiled and evaluated at different times throughout the
optimization process. [4] is one of the earliest publication to show that it-
erative compilation is a viable option for compiler optimization. Iterative
compilation is often combined with genetic algorithms [9, 17, 6]. [3] uses
Bayesian network learners to outperform previous methods for the selection
problem and reaches performance speedups of up to 2.7 compared to -03 on
an ARM processor with GCC on cBench benchmarks. More recent work uses
Bayesian optimizations with random forests for tackling the selection prob-
lem [8]. In [2], the authors use 4 flag combinations derived from LLVM’s -03
with an iterative predictive method for tackling the phase-ordering problem.
Our approach is unique in its way of tackling the selection problem and the
phase-ordering problem simultaneously without iterative compilation and
with its supervised learning approach for analyzing the full optimization
space without explicitly considering static or dynamic program features.

1. INTRODUCTION

1.3 Background

1.3.1 Fourier Analysis on discrete domains

As explained earlier, our approach requires us to derive a Fourier transform
for our novel poset. Here we will introduce the mathematical foundation
for Fourier analysis on such discrete domains, which can be derived from
the general framework of algebraic signal processing (ASP) [24]. ASP in-
troduces an axiomatic approach on defining a signal processing theory for
any algebraic domain. [27] proposes a Fourier transform derived from ASP,
which we can apply for our poset.

Definition 1.1 (Fourier basis) The Fourier basis of a poset P is a matrix ® in-
dexed by the elements in P with

Cyx = ly<x

where 1<y indicates the characteristic (or indicator) function of x <y

l _ 1, y<x
y=x = 0, else

The Fourier basis allows us to linearly transform a vector of Fourier coef-
ficients (spectrum) s, indexed by the elements in P, into its corresponding
signal s:

s = Ps

1.3.2 Permutations

Since we consider the phase-ordering problem, we will naturally encounter
permutations when mathematically describing our methods. Here we intro-
duce the relevant background on the mathematics for permutations which
we’ll be using throughout this thesis.

Definition 1.2 (Permutation) A permutation 7t over a discrete set S is a bijec-
tive mapping from S to itself.
m:5—=S

At this part it makes sense to introduce some notational conventions which
help us with keeping expressions clean and brief. We will generally use
lowercase Greek letters for naming permutations and their uppercase coun-
terpart for the domain. Furthermore, we’ll use the common notation S, to
indicate the set of all permutations with n elements (over some fixed set).
We have

|Sy| = n!

1.3. Background

We will frequently come across the inverse permutation of some permu-
tations 71, which we’ll denote as 7~ !. Additionally, we’ll write I, for the
identity permutation on N.

Instead of defining a permutation directly over some set I1, we will usually
tirst index the elements from 1 to n and afterwards define the permutation
over N = {1,...,n} (N, for a concrete n). We’ll use the expression N(x) to
refer to the index of x € ITand N~1(i) to refer to the original element, when-
ever we need to be explicit about the original value. In literature, it is very
common to define permutations directly over N and ignoring the underly-
ing set. For us however, since we will work a lot with partial permutations,
we will need to be more careful.

With the above technique, we can make use of the common one-line notation
for expressing permutations. A permutation in one-line notation is simply
a tuple where the elements are ordered according to the permutation. For
example a permutation 77 on N3 with 7(3) = 1, 7(2) = 3 and 7(1) = 2
would be written as [2,3,1]. Note that 77~ !(x) returns the index of x in the
one-line notation.

While our definition of a permutation is sound, it is rather impractical to
work with it directly. There is especially no straightforward way of com-
paring two permutations, which will become crucial as soon as we try to
express our target domain as a poset. A better way of describing a permuta-
tion for our use-case is with an inversion set. There are two common ways
of defining inversion sets: One uses pairs of places (i, j) while the other one
uses pairs of elements (x,y) = (7(i), 7t(j)). We use the element-based defi-
nition in this thesis, which will become more convenient for our purpose.

Definition 1.3 (Inversion Set) The inversion set of a permutation 7t is defined
as:

ino(rt) == {(m(i), (j)) € 1% i < jAn(i) > 7(j)} (1.1)
={(x,y) eIT%. 7 Y(x) < T Yy) Ax >y} (1.2)

An inversion set uniquely identifies a permutation. This mapping from
the space of permutations to the space of sets of pairs from N is however
injective. In other words, there exist some sets of pairs from N, which cannot
identify a permutation.

Example 1.4 Let Y = {(2,1),(1,0)}. Now let’s try to construct a permutation 7t
with Y as an inversion set. Note that 7='(2) < 7w 1(1) and 7='(1) < 7~1(0)
implies 7=1(2) < 7w=1(0) and clearly 2 > 0. But (2,0) ¢ Y, which makes it
impossible for Y to be an inversion set for any 7t.

Another common way of describing a permutation is by decomposing it into
transpositions. A transposition is basically a permutation which switches

1. INTRODUCTION

two elements in the one-line notation and leaves the rest of the sequence in
place.

Definition 1.5 (Transposition) A transposition T = [i, j] is a permutation where
T(i) = jand T(j) = iand T(x) = x for all x # i and x # j.

From algebra, we know that every permutation can be expressed as a se-
quence of transpositions. As an example, consider the permutation a =
[1,4,2,3] which can be written as « = (3,4) o [1,4,3,2] = (3,4) o (2,4).

Unfortunately permutations won’t be able to fully describe our domain of
interest. If we would only use pure permutations, we would discard the
selection problem. Luckily there already exist a mathematical foundation,
which can fully describe the elements in our domain.

Definition 1.6 (k-permutation) A k-permutation 7t over a base domain S is a
permutation over I1 C S with |I1| = k.

We will generally use n to indicate the cardinality of the base set of a k-
permutation. The total number of k-permutations for some 7 is

n!

(n—k)!

For expressing k-permutations, we can also use the one-line notation. The
3-permutation 77 on {1,4,5} with 77(1) = 5, 7(4) = 1 and 71(5) = 4 would
then be written as [5,1,4]. The position of an element x € IT in the result-
ing tuple can be expressed by Ni(7r(x)) with the translating function Nj
upholding the order between two elements.

To describe our target domain, we can now just refrain form fixing k and
include k-permutations for some arbitrary k. This more general object is
called a partial permutation.

Definition 1.7 (Partial Permutation) A partial permutation is a k-permutation
for some arbitrary k € {0,...,n}.

Let’s denote by P, the set of all partial permutations over N. For a fixed n,

there are a total of .

n! ” n!
!Pn\:Zm:k&ﬁ

k=0

partial permutations. We can already see that with large ns, the discrete
domain we are interested in will become huge.?

2For n = 60 we already exceed current estimates of the Eddington number of approxi-
mately 10%0, which is the number of protons in the observable universe.

Chapter 2

A Poset of Optimizations

In this chapter we will present a novel poset which we will use to mathe-
matically describe the set of optimization flag combinations. We will first
introduce the definition of elements in our poset. Afterwards we will define
a partial relation and derive the cover relation for it.

2.1 The domain

In chapter 1 we already hinted at the mathematical formalisms we will use
throughout this thesis to describe an optimization pipeline, which we’ll from
now on simply call an optimization.

Definition 2.1 (Optimization) An optimization is a partial permutation over a
set of compiler optimization flags.

While we will focus mainly on partial permutations, it is still possible to
apply most of the techniques presented in this thesis on other domains as
well, as long as we can construct some meaningful partial order. The selec-
tion of a domain directly imposes restrictions onto which optimizations are
considered in the final optimization problem. For example if we only want
to consider the selection problem, we could use a powerset as our domain
with the subset relation as the partial order along with a Fourier transform
for set functions, such as the one proposed in [25]. For the phase-ordering
problem, we could choose the weak order of permutations, which is also a
lattice [20]. The weak order of permutations uses the subset relation between
the inversion sets of two permutations for its partial relation.

The space of partial permutations can be seen as a combination of a powerset
and the space of permutations. We will therefore be able to consider the
selection problem and the phase ordering problem in one go. Nevertheless,
we still impose some restrictions on our optimization space. In particular,
we do not explicitly support an item to occur multiple times, which might

2. A PosieT OoF OPTIMIZATIONS

be desirable. Indeed, when running clang with its highest optimization
level -O3, it will apply some transformation passes multiple times. With
partial permutations we could support this behavior by adding the same
optimization flag multiple times into our base set and treating the multiple
occurrences as individual flags. This would however make our problem
more difficult than necessary. A more proper way might be to work with
multiset permutations in our domain. Here we will however stick to the
above definition of partial permutations to keep everything simple enough.

2.2 Partial Order

Currently, every element in our domain stands by itself. In other words we
do not have any possibility of inferring an element’s function value from
other elements, which will be our ultimate goal. We can handle this by giv-
ing our domain some structure, which imposes a relation on the elements.
Since we do not consider the program code and won’t have any input other
than the elements in our domain, the structure we define on the domain will
be integral for constructing the feature space for our ML model. As common
for discrete sets, we will give the domain a structure by defining a partial
order over it. The partial order is a key ingredient in our approach, since it
directly influences the feature space we will use and therefore the success of
our final model. Hence, a careful definition of the partial order is important.
We will choose an arguably natural definition, which will give us some nice
properties and can be evaluated relatively efficiently, as we’ll later see.

Definition 2.2 (Optimization Poset) The poset of optimizations is the set of
all optimizations over N with a partial order =< defined as

a = B:= ACBAinv(a) Cinv(p) (2.1)
for arbitrary optimizations « and p.

Proposition 2.3 = is a partial order on P.

Intuitively, « < B indicates that B applies at least as many optimization
techniques as &, where an optimization technique can be either a new flag
or a deviation from the default order. A proof of proposition 2.3 can be
found in appendix A.1.

2.3 Covering Relation

When working with posets, we quickly come across a notion called covering
relation. For example, visualizing the poset with a Hasse diagram makes use
of the covering relation. The covering relation will later play an important
role.

2.3. Covering Relation

N, /
t.‘a‘ir,-r)
X
[

,-’l
A

Figure 2.1: An optimization poset with 7 = 2. Red edges represent covering relations.

Definition 2.4 (Covering relation) Given a poset (X, =), an element a € X is
covered by b € X (a T b) iff a < b and there exists no ¢ € X such that a < c < b.

As an example, consider figure 2.1, which illustrates an optimization poset
with n = 2 as a directed acyclic graph, where the edges represent the partial
order relation. Red edges indicate covering relations.

Let’s try to apply this definition to our poset to derive a direct way for find-
ing covers of an element . We can approach this by once more considering
the powerset clause (A C B) and the permutation clause (inv(a) C inv(p))
separately. For the powerset poset it is easy to see that the covers of a set A
are all those sets B which contain a single additional element x: B = AW {x},
where ¥ indicates disjoint union. For the weak order of permutations, we
also have an easy way of identifying covers. Given a permutation «, the
inversion set of a cover B contains a single additional element («(i), a(j)):
inv(B) = inv(aw) W {(«(i),a(j))}. This is valid for exactly those permutations
which are one transposition (i,i + 1) off from a with a(i) < a(i+1). In
other words, if we switch two neighboring elements in our one-line notation,
which are in increasing order, we get a cover of the original permutation. For
example [1,4,2,3] C [1,4,3,2].

Let’s combine those insights to find the cover relation for our poset. First
consider the case A = B. With this restriction, both &« and p are permutations
over the same set A, and we can apply the above transposition method for
finding the covers of . Now if A # B, we know from the powerset poset
that B = AW {x}. But we cannot simply insert x anywhere into a. We
need to ensure that x cannot be switched with a neighbor after insertion
such that it removes an inversion. So a cover must have the following form:
B=la1,. .., % ai1,...,00 with w; < x < ajq or = [x,a1,...,0¢] with
x < orB=ay,...a with ap < x.

Before we continue with the formal conclusion, let’s first introduce a new
notion, which abbreviates comparisons between optimizations with differ-
ent domains.

2. A PosieT OoF OPTIMIZATIONS

10

Definition 2.5 (Reduction) The reduction 7tx of a partial permutation 7t onto a
set X C Il is a partial permutation with domain X with the same order of elements:

Vi, j € X H(i) < ml(j) ¢ myt (i) < gt (f) (2.2)

As an example, let m = [2,4,7,1]. Then ny, = [2,1]. From the one-line
notation we can also see how the inversion set changes from 7 to 7rx. The
inversion set of 71x contains all the pairs from inv(7r) which only have items
in X.

Lemma 2.6 For an arbitrary partial permutation 7 and a subset X C I1:
inv(rtx) = {(i,j) € inv(m).i,j € X} Cinv(rm) (2.3)

Proof The proof follows directly from equation (2.2) and definition 1.2.

(i) € X2 i < fAT () > ()}

(i,j) e X2 i<jArn (i) >n'(j)}

(i,j) € T2 4, g TINX ANi < jA (i) > 1(j)}

(i,])

i,j) € inv(m).i,j € X} O

inv(mrx) = {(i

7

L

{
{
{

Another nice property of the reduction operator is that it allows us to rewrite
the subset relation between the inversion sets as used in the definition of our
partial order in 2.2. Since the inversion set of a can only contain elements
from A, we can reduce B to A and compare the inversion sets there.

Lemma 2.7 For partial permutations «, p with A C B, the assertions inv(a) C
inv(B) and inv(a) C inv(P 4) are equivalent.

Proof We prove the equivalence by proving the implication in both direc-
tions.
* =: Assume inv(a) C inv(B). Fix (i,]) € inv(a) C A% Clearly i,j € B\
A. Together with lemma 2.6 and (i,) € inv(B), which we know from
our assumption, we conclude (i,]) € inv(Ba).

e & Assume inv(a) C inv(Ba). With lemma 2.6 we directly conclude
inv(a) C inv(Ba) C inv(B) O

Now back to the covering relation. The reduction operator allows us to
easily express that we only insert an element into an optimization and do
not alter the order of the original elements in any way.

Theorem 2.8 Let « < 3 be two optimizations in Py. B covers « iff either

1. B=Aand p=(i,i+1) oa wherei € N,_4

2.3. Covering Relation

22.B=AW{x}and B =wand B(i—1) < xifi > land B(i+1) > x if
i <nwithi= B 1(x)

Proof Without loss of generality, assume that for i as defined in 2.8 case 2,
1 < i < n. First consider the case where A = B. In this case, both « and are
permutations over the same domain A. Additionally, B is defined exactly as
the covers in the weak order on permutations. We can therefore focus on
the case where A C B, or even B = AW {x}, because if |A| +1 < |B|, we
can choose v with A C T' C B and 7y = Br. We can also assume that 4 = «,
because otherwise we can choose v = f4. Furthermore, if f(i — 1) > x we
choose v = (i —1,i) o § and if B(i + 1) we choose v = (i,i + 1) o B with i
defined as in 2.8 case 2.

What is left to prove is that §, as defined in case 2, is indeed a cover of «.
Let’s assume by contradiction that there exists a v with a < ¢ < pB. First,
we can see from lemma 2.6 on the preceding page that y4 = a = B4 and
therefore I' = B. So < and B are both permutations on B where inv(p) \
inv(7y) only contains pairs containing x. Let’s take a look at a series of
permutations over B ty C mp C - - - C 7y, with 13 = y and 71, = B where
C indicates the covering relation for the weak order on permutations. Note
that every 7,1, especially 71, = f, can be expressed as (k, k + 1) o 7r; where
mi(k) = x or mj(k+1) = x and m;(k) < 7j(k+1). But since B(i — 1) < x
and B(i +1) > x, there is no 7,1 with the above property and therefore
¥ = m = 7ty = B which contradicts our earlier assumption that vy < . U

11

Chapter 3

Learning Fourier-sparse Poset
Functions

3.1 Overview

In chapter 1 we have explained that our goal is to estimate a function over
the poset of optimizations, as defined in chapter 2. As we have seen, the
cardinality of this domain grows very rapidly by an order of O(n!). So
exhaustively measuring the function quickly gets infeasible. We will rather
need to estimate a sparse representation of the function in some feature
space from which we can compute function values for individual elements
in the domain. As mentioned earlier, we will be using the Fourier basis as
proposed in [27] as our feature space and learn a Fourier-sparse estimation
of our target function. This chapter introduces our general approach for
learning such an estimate and proposes a method for maximizing a Fourier-
sparse function on the optimization domain with an algorithm solving the
underlying NP-hard problem.

The general framework of learning and minimizing Fourier-sparse poset
functions with linear regression and enumeration, as presented in this chap-
ter, was developed by the PhD-advisor of this thesis, Chris Wendler, during
his doctoral thesis at ETH Ziirich. The contribution of this thesis lies within
the application to the poset of optimizations.

3.2 Linear Regression and Sparse Approximation

In chapter 1 we introduced the Fourier basis on DAGs as proposed in [27].
We also discovered that, given a vector of Fourier coefficients §, we can
reconstruct the original signal s with a linear transformation. Applied to
our poset of optimizations this transformation can be expressed as

s=F8 (3.1)

13

3. LEARNING FOURIER-SPARSE POSET FUNCTIONS

14

where the columns of F are the Fourier basis vectors (frequencies)
8 = (l{gjx})xep

Unfortunately we cannot assume that we know the function values for every
x € P, as described before. Let X C P indicate a set of training data points
(which we can select freely) and y the according function values (which we
can measure with our target program and input). We can then use linear
regression to find the non-zero Fourier coefficients w = wk. Let’s stick to
Lasso regression [29], since this motivates a sparse w, and assume that we
already have somehow selected a set G = Gk C P of optimizations, for
which we assume non-zero Fourier coefficients. We'll use m := |X|, k := |G|
and p := |P|. Our objective function is

1
lly — ®wl3 + Al

where ® = ®F is the Fourier basis F reduced to the rows in X and columns
in G:

q)xeX,geg = lg=x}

We can minimize our Lasso objective using coordinate descent [31]. The
final predicted w* can be interpreted as the Fourier coefficients of a Fourier-
sparse estimate of the target function on the optimization domain.

While we now have a method of computing Fourier-sparse approximations,
we don’t know yet how to select G. Since the Lasso objective is a regularized
linear least-squares problem, let’s consider matching pursuit [19]. Matching
pursuit is an algorithm for minimizing the squared L?-norm of the residual
of a linear model such that only a fixed number k of weights are non-zero.
More formally, for our case it finds an approximate solution for the follow-
ing optimization problem

min > Sy — @ st w0 <k
where ||-||o indicates the L? pseudo norm counting the number of non-zero
dimensions. The algorithm iteratively adds new frequencies which, along
with their optimal weights (optimal in the sense of minimizing the ordinary
least-squares problem), minimize the squared L>-norm of the residual. Let’s
step through the mathematical foundation of the algorithm for our case.

Let h'(x) be our estimate for x € X at step i of the matching pursuit algo-

rithm.
h() q)lw—zq)xgg Zw
geg! g€g!
g<x

3.2. Linear Regression and Sparse Approximation

The residual 7' at step i is defined as
ro= y— hi
where K is the vector representation of h'(x) indexed by x € X hi, = hi(x).

For a new iteration i 4+ 1, matching pursuit selects a new element g;11 €
P\ G' and adds it to the previous set of elements with non-zero weights:
Gl = G'w{gii1}. It does so by selecting g;,1 such that the squared L2-
norm of the new residual is minimal.

gir1 = argmin [[#*1[3 = argmin |’ — w],, @13

8i+1€P\G! gi+1€P\G!

where w, | := wg; 1+ and similarly ®. ;1 := ®., , indicate the new optimal
non-zero weight and associated frequency for g; 1 respectively.

For a given g; 1, we can find w}, _; with an orthogonal projection onto 7.

* <ri/ D. i+1>
Wiy = i) (3.2)
i HCD:,iJrlH%

where (-, -) indicates the inner product.
Now we can conclude
17113 = 11 + iy, @i |13
0
= [P + 2075 (L, @) + (W)@ 13

<ri/ q):,i+1 >2
Hq):,i+1 H%

= [z +

Hence, we select the g;+1 which maximizes the expression

<ri/ q>:,i+1>2
|D. i3

If now all available columns ®. ;1 had the same squared L?-norm, we could
simply select the g;11 with the maximum absolute correlation between r'
and ®.; ;. We’ll explain how we find such a g;;; in the next section. That
our columns all have the same norm is naturally not true per se, but with a
simple linear transformation it suddenly is.

120,11 — 13 = m
since 2®. ;.1 —1 € {—1,1}*!

15

3. LEARNING FOURIER-SPARSE POSET FUNCTIONS

16

With the bilinearity of the inner product, we can also see that maximizing
the correlation with the transformed column is equivalent to maximizing
the correlation with the column directly.

argmax(r',2®. ;1 — 1) = argmax2(r', ®. ;1) — r'
i1 @it
= argmax(r', D, ;1)
q>:,i+1

We are not quite done yet. The matching pursuit algorithm assumes a
squared L2-norm cost function, but earlier on we decided to use Lasso. For-
tunately, the Lasso objective also has a closed-form solution when optimiz-
ing an individual weight, which we can use instead of 3.2 on the preceding

page.
i)
w;k-g-l -3 <<7’ /¢:,1+1>’A)
HCD:,iJrlHZ
with
g—A ifg>A
S(gA)=<g+A ifg<—A
0 else

Finally, we can alternately find a new column for ® with an iteration of
matching pursuit and do coordinate descent for some iterations, until we
have reached a suitable k, thus concluding our final algorithm.

Let’s summarize our above results with an algorithm in pseudocode.

3.3 Computing maximally correlated columns

We are now two steps away from completing our goal. First we need a
method for finding the maximum correlation between a residual and a fre-
quency, so we can compute a Fourier-sparse poset function estimate of our
target. And finally we need a method for minimizing this Fourier-sparse
function. We will see that we can solve both those problems with the same
basic approach.

Let’s first focus on finding the maximally correlated frequency ¢* of opti-
mization ¢* € P for a given residual r over P, where both ¢* and r are
indexed over a set X C P. Let ¢ indicate the frequency belonging to some
arbitrary ¢ € P, indexed as well over X. We can reformulate the inner
product, which gives rise to an upper bound.

3.3. Computing maximally correlated columns

Algorithm 1: Algorithm for learning a Fourier-sparse approxima-
tion of a poset function.

Input: XQP,yEIRX,kEIN

Output: G C P, w € RY

1P+ ();

2w+ ();

3G+ ©;

47T

5 fori € {0,...,k} do

6 Q argmaxgep<r, (Lg=x})xex);
7 G+ Ggu{g}

8 P = (l{gjx})xe)(}

9 | w* <+ S((r,2p—1)/|X],A);

10 D (CD:,L---,CD:,i/ gD),

11 w <+ (wy,...,w;,w");

12 D, w <+ cd(y, ®,w) ; /* Coordinate descent */
13 r <y — dw;

14 end

(r, @) = (r, (t{g=x})xex) = Y Tx (3.2)

With our problem, we are however interested in the absolute correlation, for
which we can find the following upper bound.

[(r @) <max [} ry Y} —ro | = p(gi7)

xeX xeX
§3x gxx
x>0 <0

Note that y(g; r) is monotonically decreasing with g. For arbitrary g1,¢» € P
with g1 < g» we have u(g1;7) > u(g2;7).

17

3. LEARNING FOURIER-SPARSE POSET FUNCTIONS

18

Now let’s say we have already found a ¢’ whose frequency has a large cor-
relation ¢ with 7. During our remaining search for the maximally correlated
frequency, we can then discard all g» > g1 if #(g1;7) < c¢. The idea of our
algorithm is now to start at the root of our poset (which is the empty set)
and work our way upwards in some manner, keeping track of the largest
correlation ¢ we found yet. As soon as our upper bound y for the correla-
tion drops below ¢, we no longer need to check any larger elements and can
switch directions. When there are no more elements left to check we can be
sure we have found the element with the largest correlation.

The problem of finding all elements ¢ from a substructure poset (which is a
poset with a unique least element), conforming to an anti-monotonic prop-
erty, such as ¢ > u(g*;r), is called the enumeration problem. [21] proposes
an algorithm called reverse search, which solves the enumeration problem for
arbitrary substructure posets. To apply reverse search, we need to define
an inverse reduction mapping, which we can construct from a total order
and the cover relation of the poset. In chapter 2 we have already derived
the cover relation, so we only need to define a total order for our poset.
The choice for our total order will not have an impact on our result, since
reverse search solves the enumeration problem with any total order. How-
ever, our choice might impact the performance of our final algorithm. We
choose a rather straight-forward definition based on the lexicographic order
of subsets.

Definition 3.1 (Total Order on Optimization Poset) Let o, € P. o« < B is
defined as
< B A< BA(A=B—inv(a)<pyinv(p))
& A< BVA=BAinv(a) <jyinv(p)

where <, indicates the lexicographic order of subsets with the order of pairs being
induced by the lexicographic order respecting the order of elements.

Proposition 3.2 < is a total order on P.
A proof of proposition 2.3 can be found in appendix A.1.

Lemma 3 of [21] now provides us with a recipe for constructing the inverse
reduction mapping.

flla)={BeP. aCBAVyYC B a<7}

In words, the inverse reduction mapping of an optimization « is the set
of covers B of o for which « is the smallest element when considering all
elements that B covers, according to the total order <. Reverse search now
does exactly what we explained earlier. It starts at the root (the empty
set) of our poset and recursively runs over the elements returned by the

3.3. Computing maximally correlated columns

inverse reduction mapping, whose upper bound y of the correlation with r
is larger than the largest correlation yet found. By using the total order in the
inverse reduction mapping, we never encounter an element in P twice. The
inverse reduction mapping therefore implicitly defines a traversal tree over
our poset, where we can prune subtrees according to our anti-monotone

property u.

To wrap things up, let’s derive a more direct way for computing the inverse
reduction mapping for an element of P. First let’s note that with our total
order, the lexicographic order between the domains A and B is dominant
compared to the lexicographic order between the inversion sets. This means
that for some a € P, the inverse reduction mapping can only contain covers
B with B = A if B covers no v € P with I' C B. More concrete, cannot
conform to the condition of case 2 in theorem 2.8. We call such a 8 element
stable.

Definition 3.3 (Element Stability) An optimization p € P is called element
stable if either k = |B| = 0 or k > 1, it contains no rising sequence larger than 2

and B(1) > B(2) and B(k —1) > B(k).

We are not quite done yet with the case A = B. We now also need to make
sure that every v C B with I' = B is larger than «. More precisely, that
inv(a) <jex inv(y). Luckily, this is relatively easy to check. The inversion
introduced by transposition (i,i + 1) must be lexicographically larger than
the largest one present in a. We can find the largest inversion in linear time,
as we’ll show a little later.

For now let’s also take a look at the case B = AW {x}. Here we don’t have
to consider any y with I' = B, since & < 7 would always be true (except if
x is smaller than all elements in A). So we just need to check that A <j, T
which, similar to earlier, is exactly then the case when x is larger than all
elements in A.

Theorem 3.4 (Inverse Reduction Mapping) For a given optimization « € P
the inverse reduction mapping f~'(«) contains exactly those elements B 1 a for
which the following conditions hold.

* IfB=Ad{x}, thenVa € A. Bp\(CPNAa<x
* IfB= Awithp=(i,i+1)oun, then B is element stable and
(BG), B+ 1)) <iex(B(D), (i + 1))
forall j € Nja—q with B(j) > B(j +1).

Proof We prove the theorem from the definition of the reduction mapping
from [21] for the optimization poset and <. The reduction mapping of a

19

3. LEARNING FOURIER-SPARSE POSET FUNCTIONS

20

non-empty optimization p is defined as the optimization &« C B with a« < 7
for all 4 C B. Let’s do a case distinction on the structure of .

If B is element stable, then for any o C B (and therefore also for «) we have
I'=Band B = (jj+1)oywithi € Njy_4 and 7(j) < ¥(j + 1), according
to case 1 of theorem 2.8. Note that such an i must exist because the empty
set is the unique least element of the optimization poset and therefore every
optimization except for the empty set most cover another optimization. Let’s
assume, without loss of generality, that j # i. We can derive

ino(y) W{(B(j), B(j +1))} = inv(B) = inv(w) & {(B(i), B(i + 1))}
ino(7y) = inv(a) W {(B(7), B(i + 1))I\{(B(), B +1))}

From definition 3.1 we can see that inv(a) <je, inv(vy). Hence
ino(w) <jex inv(a) W{(B(i), Bi + 1))} \ {(B(), B+ 1))}
{(B(), BG+ 1))} <iex{(B(i), B(i + 1))}

Which is equivalent to the second condition of theorem 3.4.

If B is not element stable, then clearly B = AW {x} for some x, since a < 7y
if ' = B. Now we can make a similar deduction as before, since we can only
consider v C B with B =T W {a}. Again assume without loss of generality
that x # a. Thenwe haveI' = AW {x} \ {a} and therefore {a} <j,{x} which
is, along with the assertion ysgsubsetp, equivalent to the first condition of
theorem 3.4. O

For computing the inverse reduction mapping for a given optimization «,
we can now enlist all covers of & and check whether they conform to the
conditions in 3.4. With our current knowledge this is however rather inef-
ficient. We might want to only enlist the valid elements directly. For the
first condition of theorem 3.4, we need to make sure that when adding a
new element x to «, there doesn’t exist a larger element 2 in the resulting p
which we could remove to get an element covered by B. Starting from «, this
is rather simple. First find the largest y € A which we could remove from
a to get an element covered by a. Then iterate over all elements x € N\ A
with x > y and check whether we can add it anywhere into « to get a cover.
If we can, we need to check that either the element to the right is smaller
than x or that there is an element two positions to the right that is smaller
than x. If x is larger than all elements in A, we can simply append x to the
end of «.

The second case is a bit more tricky. Here we actually have no other choice
than to enlist all covers B and check the element stable condition and the
inversion set superiority. If we can however check those two conditions in

3.3. Computing maximally correlated columns

constant time, we still only need linear time to find a possibly linear amount
of elements.

Let’s first consider the inversion set superiority. We can check this condition
by comparing the newly introduced inversion (a(i + 1), a(i)) lexicographi-
cally with the largest inversion of a. Recall that the largest inversion (x,y) of
« is defined as the inversion for which all (i,) € inv(a),i < xVi=xAj <y.
Given an increasingly sorted list & of the elements in A (which is also an op-
timization), we can find x by comparing & with a. x is simply the first
element of &, when staring from the back, where « and & deviate from each
other. vy is now the largest element smaller than x that appears after x in «.

The following algorithm finds the largest inversion in « as described above.

Algorithm 2: Algorithm for finding the lexicographic largest inver-
sion in an optimization

Input: «, &
Output: (x,y)
if « = & then
‘ return &;
end
k<« |Al;
i<+ k;
while a(i) = & do
‘ i+—i—1;
end
x < &(i);
y<+1
for j € Ny do
if j>iAa(j) <xAa(j) >y then
|y al)

end

© 0 g3 S Ul R W N -

e e
B w N R o

end

=y
(4]

The above algorithm has a complexity of O(k) and must only be run once
when computing the inverse reduction mapping of some optimization.

Now let’s take a look at the element stability property. There are basically
two cases we need to consider. First, given that the current optimization
« is element stable, we can check whether the given transposition (i,i + 1)
breaks this property. In other words, we need to check that the transposition
does not introduce any rising sequences of length 3. Note that we do not
need to check the special conditions at the start and the end of &, because

21

3. LEARNING FOURIER-SPARSE POSET FUNCTIONS

22

the transposition is not allowed to switch (1) and «(2) or a(k — 1) and «(k)
due to the definition of the cover relation. The sequence of length 3 is exactly
then introduced when a(i —2) < a(i—1) < a(i+1) or a(i) < a(i+2) <
a(i+ 3), which we can naturally check in constant time.

The second case we need to consider is when « is not element stable, but the
transposition makes it element stable. This can only happen if a contains
exactly one rising sequence of length 3 or 4. If it contains a rising sequence
of length 4, the transposition needs to switch the middle two elements of
the sequence. With a rising sequence of length 3, let j be the start index
of the sequence. Now the transposition must either satisfy i = j or i =
j +1, and it cannot introduce a new rising sequence of length 3, for which
we can apply the check from above. There are a few more edge-cases we
need to consider, because here we cannot assume that the start and end
are descending. If there is no rising sequence of length 3 or 4 and either
«(0) < a(1) or a(k —1) < a(k) but not both, we can swap «(0) and «(1) or
a(k —1) and a(k) respectively. But if k = 3, we additionally need to make
sure that «(0) > a(2). If the rising sequence of length 3 starts at index 1
we also need to make sure that a(2) < «(0) and if it ends at index k — 1 we
need to check that a(k) < a(k — 2).

We can clearly compute the number of rising sequences of length 3 and 4 in
linear time for a given optimization, which we only need to do once when
computing the inverse reduction mapping.

3.4 Minimizing the Fourier-Sparse Function

We now have an algorithm for finding Fourier-sparse estimates of some
function over the optimization domain. This is by itself already quite neat,
since we now have a function which we can analyze to better understand
the impact of different optimizations on some scalar property, such as the
runtime. In our case we want to find the optimization which minimizes the
function.

Given a vector of non-zero Fourier coefficients w, belonging to the elements
of G C P, recall that we can compute the function value f(x) for some x € P
as follows.

fx) =®pw =) igurywg =) wg

g€y g€g
g=xx

This formulation looks very similar to the formulation in equation 3.2 on
page 17. Indeed, if we would replace ¢ < x with x < g, we would have the
exact same problem to solve and could use the same methods for finding
the minimum as we have for finding the maximum correlation. The only

3.4. Minimizing the Fourier-Sparse Function

thing holding us currently back is our definition of the partial relation. But
we can just use the dual order of < instead.

Definition 3.5 (Dual Order) The dual order <! of the partial order < is defined
as the partial order for which for any x,y € P

x =<1 y:=oyx
Note that for notational simplicity we have already implicitly used the dual

order rather frequently, since > is equivalent to <1

With the dual order we can now write our minimization objective as a max-
imization objective similar to 3.2 on page 17.

f/(x): Z —Wg
g€g
x=<lg

So we can now derive the covering relation for the dual order and proceed
by applying the very same techniques as for computing the maximum corre-
lation. Note that we fulfill the constraint of <! being a substructure poset,
since < has a unique maximum, which is the optimization containing all
elements in reverse order.

We will proceed more swiftly with the remaining derivations, since it fol-
lows the same basic scheme as for the correlation maximization.

Proposition 3.6 (Dual Covering Relation) Let a <! B be two optimizations in
Py. B covers w iff either

1. B=Aand p=(i,i+ 1) oax wherei € N,_4

2.B=A\{x}withx € Aand agp = Band a(i —1) < x ifi > 1 and
a(i+1)>xifi <nwithi=a"1(x)

We'll use the dual <! of the total order < for defining the inverse reduction
mapping on the dual poset of optimizations.

Let C(«) be the set of elements which can be added to A to get a cover of «
in the optimization poset.

Cla)={xe N\IL3IpeP.aCBAB=A+{x}}
Additionally let inv(a)C be the complement of the inversion set.
ino(a)C = {(i,j) e N i>jra"t(i) >a"1(j)}

Theorem 3.7 (Inverse Reduction Mapping on the Dual Poset) For a given op-
timization « € P the inverse reduction mapping on the dual poset ¢~ () contains
exactly those elements B C « for which the following conditions hold.

23

3. LEARNING FOURIER-SPARSE POSET FUNCTIONS

24

e IfB= A\ {x} with x € A, then x is larger than all elements in C(«)

e IfB= Awith = (i,i+1) o, then C(B) = @ and for all (j, k) € inv(«)C,
(k) <pex(a(i), a(i+1))

Note that we can compute the largest element in C(«) in linear time from
the definition of the covering relation on the optimization poset. The lex-
icographic largest element in inv(a)¢ can be computed in linear time as
well by slightly modifying algorithm 2 on page 21. For computing whether
C((i,i+1)oa) = @ for a(i) > a(i + 1), the following proposition comes in
handy.

Proposition 3.8 Let « € P and a(i) > «(i + 1) for some i. Then

C((i,i+1)oa) =0 Ca) =OAN{xeN.a(i+1) <x<a(i)}CA

3.5 Speeding up the Enumeration

In the reverse search algorithm, we compute the correlation or the function
value in every iteration, of which there are possibly exponentially many.
Such a computation of the correlation or the function value mainly consists
of evaluating the partial order for two optimizations. So clearly the evalua-
tion of < will become a performance bottleneck very quickly. Unfortunately,
the naive way of evaluating our partial order includes computing and com-
paring inversion sets which contain O(n?) elements in general. Fortunately
we can be smarter and don’t need to explicitly compute the inversion sets.
Let’s say we have two permutations « and p with inv(a) C inv(B). From
the weak order of permutations we know that we can reach B from « by a
series of transpositions for neighboring elements, each increasing the inver-
sion count (the number of elements in the inversion set) by one. The idea
now is to use some distance measure K(a, f) which counts the minimum
number of transpositions required to reach B from a«, and then conclude
that inv(a) C inv(p) exactly then when |inv(a)| + K(a, B) = | inv(B)|.

A commonly used distance measure for permutations, which we can also
use for our purpose, is called Kendall tau distance [14].

For notational brevity, let i and j in the following be elements of N.

Definition 3.9 (Kendall tau distance) For two permutations x and B, we define
the Kendall tau distance as

K(a, p) = {(@,j) i >j. ali) <a(j) ABG) > B()V
a(i) > () A B(i) < B() Y

The Kendall tau distance works better together the place-based definition
of the inversion set, because it compares the inversions between the two

3.5. Speeding up the Enumeration

permutations at fixed places. The place-based definition of the inversion
set is however equivalent to the inversion set of the inverse permutation
inv(rt=1) for the element-based definition. Note that the inversion count is
independent of the choice between the two definitions of the inversion set:

|inv(r)| = | inv(m™1)| (3.3)

Theorem 3.10 Let I be the identity permutation, a and B some arbitrary permuta-
tions. Then the following assertions are equivalent:

ino(a™) C inv(B71) (3.4)
K(I,a) 4+ K(a, B) = K(I,B) (3.5)
| inv(a)| + K(a, B) = |ino(B)] (3.6)

Proof First, let’s note that

ino(mr™) = {(i,j) € 1% i > jAn(i) < n(j)} (3.7)

For proving the equivalence between 3.5 and 3.6, note that I(i) > I(j) never
holds. It follows that

K(I,) = |inv(mY)| = | inv(m)]

Now let’s focus on the proof between 3.4 and 3.6. Since the disjunction in
the definition of the Kendall tau distance is exclusive, we can write K as
follows.

K(a, p) = |inv(a™") \ ino(B~")| + |ino(B~") \ ino(a™")]

We’ll now prove the equivalence by proving the implication in both direc-
tions separately.

=: Assume inv(a~!) C inv(B1). Since inv(a~1) \ inv(B~1) = @, we have
K(a,p) = ino(p~1) \ inv(a™)|
Now we can directly conclude

ino(a) Cinv(B1) & inv(t) = inv(a™) W (ino(B1) \ inv(a™1))
= |ino(p~)| = |inv(a™")| + |inv(p~") \ ino(a™")]
= |ino(p~")| = |inv(a™")| + K(a™', p71)

<: We prove the implication by contrapositive. Assuming inv(a~1) &
inv(B~1) we’ll show that K(a,) # | inv(B~1)| — | inv(a™1)].

25

3. LEARNING FOURIER-SPARSE POSET FUNCTIONS

26

From our assumption we know that inv(a~!) \ inv(f~1) # @. Hence

K(a,) = |ino(B~) \ ino(a™)| + | ino(a) \ ino(8~)]
> |ino(B~1) \ ino(a)|
> |ino(B~1)| — |ino(a)] 0

Computing the inversion count of a permutation is a classic algorithmic
problem and can be solved with a basic algorithm based on merge sort
in O(nlogn). [7] proposes an algorithm which achieves O(n/logn) time
complexity. Since our ns are however relatively small (up to 61 for our
experiments), the introduced overhead of this algorithm due to the added
complexity in its implementation dominates the algorithmic runtime im-
provements.

Now considering the computation of the Kendall tau distance, we can make
the following derivation.

K(a,p) = {(i,) sa™ () > a7 (). i<jAB(a (i) > Bla™ ())V
i>jABai(i) < pla ()}

=@ i>] i< jABT (i) > Bla”(f))V
i>jABai(i) < pla ()}

— Jino(Boa)

The equivalence at (x) works because for the cardinality, the exact content
of the set does not matter, and the equivalence at (xx) works because the
order in which we traverse N does not matter.

To summarize, we were able to reduce the subset comparison between the
inversion sets to a comparison between inversion counts, which we can com-
pute in O(nlogn) time.

3.6 Selecting the Training Set

The selection of the set of optimizations &', for which we measure the run-
time of our target program, should be expected to have a great impact on
the success of our final optimization. For example, if there is a larger selec-
tion of optimization flags, which only impact the performance if they are in
some unique order, we can easily miss the impact of this combination if we
don’t choose X properly. While a deeper analysis of sampling methods is
out of scope for this thesis, we will present two basic random methods for
selecting X'

3.6. Selecting the Training Set

A naive way of sampling a single optimization randomly can be done in
a straightforward fashion. We can simply choose some k € {0,...,n} uni-
formly at random and then sample k individual elements from N. The
probability of selecting a specific optimization of length k is then

1 >I<(n—k)!
n+1 n!

With this method, an individual optimization with a low cardinality has
a higher probability of being sampled than an optimization with a high
cardinality. This might lead to imbalances during training on a training set
sampled with this strategy.

As an alternative, we might want to consider sampling uniformly at random.
In this case an individual optimization x would have a probability of being
sampled of

1
P(x) = = (3.8)
Zm:O m!
and a probability of having cardinality k of
=3 1 P
P(lx| = k) = pr = = = (3.9)

oo =k Ehom (n—k)!

We could now sample k according to px and otherwise use the naive strategy
as above to sample an optimization uniformly at random. This method
would however lead to overflows in most common programming languages
when calculating py for large n and is therefore not ideal either.

A better strategy might be to iterate over the different k from 7 to 0 and
deciding each step whether to choose the current k or not according to some
probability gx. This way we don’t need to calculate py directly for sampling
k. Instead, by choosing gx correctly, we can still sample k according to py.
Let’s define

g = P(|x| =k | |x| <k+1) (3.10)

Using Bayes’ theorem, we get

1
] _ P(x[<k+1]|x|=k)*P([x|=k) _ px
k P(|x| <k+1) YK o P

(3.11)

The following lemma shows that our definition of g is indeed correct.

Lemma 3.11 Forall k € {0,...,n}:

qn ifk=mn
Pe= " : (3.12)
{qk*nm:k+1(1—€]m) ifk<n

27

3. LEARNING FOURIER-SPARSE POSET FUNCTIONS

28

Proof First note that the case k = n in 3.12 on the preceding page follows
directly from 3.10 on the previous page, since |x| < n + 1 is always true.

For k < n, let’s rewrite pj using 3.11 on the preceding page:
pr = qe* P(|x| <k+1)
What's left to prove is that P(|x| < k+1) = [T,—4;1(1 — gn) for all k =
{0,...,n—1}. We do this by induction over k.
® Base case (k =n —1):

P(lx| <n)=1-P(|x| =n)=1—¢q4 (3.13)

* Step case:

P(lx| <k)=P(]x| <k||x| <k+1)*P(|x|] <k+1)
1= P(|x| = k| |x| <k+1))= P(|x] < k+1)
1—q) =« P(|x] <k+1)

n

=1 —aq)* JT 1-4gm

m=k+1

m=k

= (
= (

—

For our new strategy to be effective, we should have a simple recursive
formula for g, and should be able to calculate g,, even for large n. Let’s start
with the latter. Remember that g, = p, and hence

1
In = =1 (3.14)

m=0 m!
For small n, we can calculate this value directly using the above formula.
For large n, we can approximate g, with %, where ¢ is Euler’s number, since

201

7':6
mzom‘

Note the small error of the denominator of this approximation:

n

e— Y % € O((n+1)1™)

m=0

To find a recursive formula for gy, let’s first find a recursive formula for py.
3.9 Pn
Pt = Gk r 1)
_ Pn
C (n—k+1)(n—k)!
39 Pk
Cn—k+1

3.6. Selecting the Training Set

Now we get a nice recursive formula for q,:_llz

=(n—k+1)(g;' —1) (3.15)

We summarize the above results within algorithm 3

Algorithm 3: Uniform Sampling of Optimizations
Input: n > 0
k < n;
if n > 15 then
‘ T Leg
end
else
| g o
end
while k > 0 do
if mnd(q%l) then

k
10 ‘ break;

11 end

12 else

13 qk_1<—(n—k+1)(qk_1—1);
14 k< k-1

15 end

O 0 NN o U1 B W N R

16 end
17 return randPerm(n, k);

In algorithm 3, rand(p) returns true with probability p and randPerm(#, k)
returns a random k-permutation.

The recursive expression 3 unfortunately still looks like a factorial when un-
rolling it. So g, ! might still explode and might become too large to be rep-
resented easily. Luckily it turns out that with our setup, everything works
out fine.

Lemma 3.12 The sequence q,°, ..., q;, " is strictly monotonically increasing:

vn>0,ke{l,...,n}. gl <g?

29

3. LEARNING FOURIER-SPARSE POSET FUNCTIONS

Proof (By induction over k) Reformulation of 3.15 on the preceding page
gives us

-1
D1

—+1
n—k+1+

9 =

e Base case (k =1):

1
-1 _ Y0

1
0 —7+1:E+1>1:‘151

e Stepcase (k € {1,...,n—1}):

-1 1 -1
A1 H g Tk
n—k+1+1< n—k—|—1+1< n—k

0 = +1:”Ik_+11 O

Theorem 3.13 Foralln >0,k € {0,...,n} we have 1 < qk’l <e.

Proof From lemma 3.12 on the previous page we know that g, ' is mono-
tonically increasing and therefore g, ' = 1 is the minimum and g, the
maximum of the sequence. Furthermore we know from 3.14 on page 28 that

n

_ 1
qn1:ZM§

m=0

1
— =e U
m!

3
i

30

Chapter 4

Approximate Poset Enumeration

Currently, the enumeration of the poset is the main runtime bottleneck in
our algorithm. Solving the enumeration problem with our reverse-search
algorithm quickly becomes infeasible, as we have discovered in our exper-
iments. A method for tackling this problem is to abstain from finding the
exact maximum. In this chapter we will present two methods for approxi-
mate optimization on our poset.

4.1 Delta-Approximate Enumeration

The first method we’ll show is a very simple modification of our exact enu-
meration method, similar to the relaxation of the pruning condition in [26].
Recall that the condition by which we prune subtrees during enumeration
is

Y, ez plgr)

xeX

figintl
for the currently considered optimization g and the best already encoun-
tered optimization gx*.

Remember that y is an upper bound on the value for g. So intuitively, we
might get away well enough by subtracting some small § > 0 from y, which
would allow us to prune earlier in the tree. The new pruning condition
would then become
0+ Z re > u(gr)

xeX

§=x
Obviously we then loose the guarantee that we will find the exact maxi-
mum. Setting § properly becomes a question of balancing better runtime
with better precision.

31

4. APPROXIMATE POSET ENUMERATION

32

4.2 Monte Carlo Tree Search

In recent years Monte Carlo Tree Search (MCTS) has gained a lot of attention
due to its successful applications to games such as chess or Go [28]. At its
core lies the UCT (upper confidence bounds of trees) algorithm [15], which
we’ll adapt to our setting for approximately finding the maximum absolute
correlation and the maximum function value for our poset. For this chapter
we’ll primarily consider the maximum absolute correlation problem, but
everything can similarly be adapted to the function minimization problem.
We'll use [5] as a reference for the following introduction into MCTS, the
UCT algorithm and our applications and modifications.

The basic idea of MCTS is to iteratively build a search tree from the current
state until some computational budget is reached. Based on the search tree,
a decision is made for which action is chosen next. In our setting, the state
is an optimization and an action is just some transformation of the current
optimization which gives us a new one. The decision tree is built using two
policies: the tree policy and the default policy. The tree policy is responsible for
selecting a leaf node from the nodes in the current search tree, from where
the search tree should be expanded. It then adds a new child to the retrieved
node. The default policy then randomly iterates the underlying decision
process starting from the newly created node until an end is reached. The
value discovered during this random search is then propagated into the
decision-making of the tree policy.

The UCT algorithm uses upper confidence bounds for traversing the tree in
the tree policy. A child node v’ of the current node v is selected, maximizing
the value

UCT =

Q(v") 2In N(v)
N 25 TNy (4.1)

where Q indicates the accumulated value per node and N the number of
times a node has already been visited. C, is a constant, typically set to 1/+/2
if X € [0,1]. Cp, can be interpreted as a control for the trade-off between
exploration and exploitation. The first summand in 4.1 can be understood
as the exploitation and the second as the exploration term. The UCT value
of unvisited children is understood to be co which forces the tree policy to
first fully expand a node before traversing further. This selection is made
randomly. The default policy in UCT simply chooses an action uniformly at
random and returns the value found at the last node. In our case, a terminal
node is an optimization, for which we cannot add any further flags, or the
state reached after performing a stop action. This value is then propagated
back through the search tree and added to Q for every node encountered
earlier in this iteration of the tree policy.

4.2. Monte Carlo Tree Search

For our application, we use the absolute correlation as the value computed
by UCT at the end of the default policy. Since we are interested in finding
the maximum absolute correlation, every run of the default policy effec-
tively already works as a query for us. A run of UCT simply returns a
modification on the current optimization, for which we expect to find good
absolute correlations. For the design of the action space, we are basically
free to choose any modifications, as long as we are certain that we can reach
every optimization by a feasibly long series of actions from the root element,
which we are also free to choose.

If we however assume that we traverse the poset similarly as during enu-
meration, we could enhance UCT by pruning subtrees with the condition y,
as we did during enumeration. However, for MCTS, we are not bound to
follow the cover relation, but can simply traverse the poset, such that « < j
always holds, where « is the current node and p the next.

For some optimization «, let’s choose the action space such that for any next
optimization B it holds that |B| = |A|+1 and & = B4 and therefore « < B. In
words, our action simply adds a new element at any position in the current
optimization, which is easy and efficient to implement. Additionally, we
need to add a stop action to every state. The number of actions available
for some w is then (n — |A|)(]A| + 1) + 1. We'll need to start the algorithm
at the empty set, because otherwise we wouldn’t be able to encounter every
optimization. We can now compute the upper bound u for the absolute
correlation with the residual for every newly added node « in the search
tree. If 4 < ¢ where c indicates the maximum absolute correlation computed
yet, we can prune the subgraph and set Q(a) = —oo.

For the minimization problem, we start at the inverse ordered optimization
containing all elements, as we did for enumeration. The action space needs
to allow switching and removing elements to be able to reach every opti-
mization. So let’s allow two kinds of actions (plus the stop action) for some
node a: either a transposition (i,i + 1) where a(i) > a(i 4+ 1) or selecting
and removing an element from A. Such a traversal clearly respects the order
of <!, and we can again apply pruning similar to the maximum absolute
correlation problem.

Let’s summarize our contributions from this section. We proposed an adap-
tion of the UCT algorithm for approximately enumerating our optimization
poset. By respecting the partial order during traversal, we were able to
guide the search by pruning subgraphs using the same technique as for the
complete enumeration.

33

Chapter 5

Implementation and Experimental
Setup

The implementation includes two major parts. The first part implements
a runtime measurement setup, while the second part implements the ML
algorithms. Most of the codebase is written in Python, while the perfor-
mance critical parts, which are the enumeration and the UCT algorithms,
are written in C++ and bridged to Python with pybind11 [13].

5.1 Setup and Usage

We provide the python module compiler_opt for interacting with our code-
base, which can be found at the project root directory. A readme file can be
found in the project root directory containing installation and usage instruc-
tions. There are multiple submodules, each providing its own functionali-
ties.

env The compiler_opt.env submodule implements the compiler setup
and the measurement setup. The compiler setup implements an interface
for compiling source files for a given optimization. It is responsible for
managing the available flags and different compilation phases. The mea-
surement setup provides an interface for measuring runtimes for a fixed
compiler setup.

cbench, polybench The submodule compiler_opt.cbench and the sub-
module compiler_opt.polybench implement a measurement setup for the
cBench and the polybench benchmark suites respectively.

data The compiler_opt.data submodule is responsible for managing (cre-
ating storing and loading) datasets for a given measurement setup. It also

35

5. IMPLEMENTATION AND EXPERIMENTAL SETUP

36

provides functions for randomly sampling query points.

estimators The compiler_opt.estimators submodule implements an sklearn

interface for our Lasso regression algorithm.

experiments The compiler_opt.experiments submodule provides multi-
ple functions for fitting and minimizing Fourier-sparse poset functions.

measure The compiler_opt.measure submodule is responsible for manag-
ing full dataset suites. It provides a simple interface for creating new dataset
suites and adding and removing benchmarks and datasets to the suite. A
simple implementation of the visitor pattern is provided for analyzing the
benchmarks over a complete suite.

evaluate The compiler_opt.evaluate submodule provides an interface
for collecting solutions and baselines of the compiler optimization prob-
lem into result objects. Furthermore it provides function for analyzing those
results over a full datasuite.

5.1.1 Example Usage

The following example code creates a new dataset suite for all supported
cBench benchmarks and fills it with measurements for n = 30 and 1000
datapoints. It then fits and minimizes every dataset with MCTS and stores
the results in the suite and finally plots them.

import compiler_opt as co

setup = co.cbench.default_setup
setup.compiler = co.env.clang
setup.compiler.load_flags (\
os.path. join (\
co.env.proj_root ,\
"flag_lists",\
"1lvm10_no_reps_sorted.txt"))
setup.set_iterations (5)
setup.set_subset (list (range (30)))

setup.tag = "30"
co.measure.fill_dataset_suite (\
setup,\

[co.get_random_permutation (1000, setup.n)],\
co.cbench.benchmarks)

co.experiments.run_evaluation_on_suite (\
name="30", approx_pattern="30")

5.2. Runtime Measurement Setup

co.evaluate.visualize_suite (names="30")

5.2 Runtime Measurement Setup

An implementation of a measurement framework supporting two of com-
monly used benchmark suites for compiler flag optimizations, polybench
[23] and cBench from the collective knowledge framework [11], is provided.
The framework has built-in support for both GCC and LLVM / clang [18],
while for GCC, only the selection problem is supported, since it does not
allow defining a custom order for its optimization flags. Therefore, all of
our experiments were performed with LLVM.

Optimization in LLVM happens mainly in the middle-end on LLVM inter-
mediate representation (IR) by a tool called opt. We can compile a collection
of source files to LLVM IR using clang and llvm-link with the following
commands

clang -emit-1lvm -c \
-03 -Xclang -disable-llvm-passes sources.c
llvm-1link *.bc -o linked.bc

The -03 flag enables some (minor) front-end optimizations of clang, which
we will not customize, and allows opt to apply its optimizations. With
-Xclang -disable-1llvm-passes, we tell clang to not run opt itself. We can
then use opt with our custom optimization flags (e.g. -loop-unroll) as
follows

opt -loop-unroll linked.bc -o optimized.bc

For LLVM 13 and above, we additionally need to turn off the new pass
manager with -enable-new-pm=0, which our implementation does auto-
matically. Since using the legacy pass manager is deprecated since LLVM
13, there is also support for the new pass manager in our implementation.
However, since we extract our flags from -03 for the legacy pass manager,
and since related work mainly uses the legacy pass manager, we used it as
well.

After optimization, we can use llc to compile to assembly and afterwards
clang again to create an executable.

1llc optimized.bc -o out.s
clang out.s -o a.out

LLVM differentiates between transform and analysis passes. Analysis passes
analyze the code but do not modify it. The results of analysis passes are then
used by transform passes, which, as their name suggests, actively transform

37

5. IMPLEMENTATION AND EXPERIMENTAL SETUP

38

the source code. The pass manager automatically puts required analysis
passes before transform passes. However, there might be multiple imple-
mentations of the same analysis, which might fit better in some circum-
stances than the default choice made by the pass manager. So selecting
the right analysis passes for a transform pass is a challenge by itself. We
mitigate this challenge by extracting some knowledge from -O3. Our im-
plementation can automatically extract the pass pipeline used by -O3 and
distinguish between analysis and transform passes. It then creates a list
of flag combinations for us to be used, where every flag combination is a
transform pass appended to a list of analysis passes. Every transform pass
encountered in -O3 is added to this list with all the analysis passes which
appear before it in -O3 prepended. This gives us a total of 99 transform
passes, some of which appear multiple times. We can reduce the number
of flag combinations by removing the duplicate transform passes, which re-
sults in 61 individual combinations. For further reducing of the number
of combinations we need to consider, we sorted the flag combinations ac-
cording to their individual runtime improvements for some benchmark. We
could then use the best n flag combinations to test our algorithms.

For our experimental setup, we chose a collection of 24 benchmarks from
cBench, which ranges over multiple different application domains. The exact
selection can be found in appendix A.3. We use the provided scripts of
cBench to check the output of a run of the benchmark. If the output differs
from the reference during measurements, we impose a large penalty on the
given optimization to force our algorithms to avoid similar optimizations
during minimization.

To ensure stable measurements, cBench automatically performs multiple it-
erations for one run of a benchmark. The number of iterations depends
on the benchmark, while one run is targeted to take roughly a second. We
additionally perform multiple runs per benchmark to further stabilize the
measurements and to measure the variance such that we can detect unstable
measurement environments.

CBench also provides an infrastructure to check the output after a run. This
allows us to check that after applying an optimization, the program still pro-
duces correct outputs. We use this infrastructure and impose a large penalty
on the runtime for optimizations which fail the check. This motivates our al-
gorithms to refrain from outputting flag combinations which produce faulty
programs.

5.3 Machine Learning Algorithms

The implementation of the reverse search algorithm as well as the approx-
imate methods are done in C++. The implementation of UCT and the im-

5.3. Machine Learning Algorithms

plementation of reverse search are generic algorithms implemented with
template programming. This allows for a more flexible experimental setup,
since it enables switching posets easily without a complete reimplementa-
tion of the algorithms. While the modular implementation sacrifices some
performance, we still didn’t neglect performance completely. The algo-
rithms are parallelized, and often we prefer managing memory ourselves
instead of using abstract datastructures from the standard library.

For Lasso regression with coordinate descent, we use the ElasticNet imple-
mentation provided by sklearn [22]. We split our datasets into a training,
a test and a validation set. The training set consists of 80% of the dataset
while the test and validation sets both consist of 10%. Those splits are gen-
erated randomly for every experiment conducted. We use the validation set
for early stopping on the number of non-zero frequencies. Early stopping is
implemented so that it records the frequencies and coefficients for the best
validation score, which is evaluated every 5 iterations in our experiments. If
no new best validation score is found for 20 more evaluations, the algorithm
is stopped and the best configuration is returned. The measurements are
normalized to have zero mean and unit variance and the hyperparameter
A of Lasso is set to 0.001. For the UCT algorithm, we use a computational
budget of 100’000, where the computational budget indicates the number of
runs of the tree policy, before a decision is made.

For the complete powerset enumeration, we use the code from [32].

39

Chapter 6

Results

For the evaluation, we used datasets with 1000 data points per benchmark.
Generating such a dataset for a single benchmark takes on average roughly
one hour, which means that generating datasets for a fixed configuration for
all benchmarks in our selection takes roughly a day. We generated and eval-
uated datasets for n = 61, 30 and 10 flags. For n = 30 we additionally gen-
erated datasets with a fixed flag selection for evaluating the phase-ordering
problem. We did the same for the selection problem with n = 61, where we
tixed the order of the LLVM transform passes as they appear in -03.

In our experiments, we soon discovered that the complete enumeration
quickly becomes infeasible due to the poset size explosion. So for n = 30
and n = 61 we completely switched to MCTS for fitting and minimization.
Delta-approximate enumeration only allowed us to marginally increase n
without imposing a too large 9.

We now present the results of our experiments and provide some interpre-
tation. For every n under consideration, we provide two bar plots. The first
plot shows the final runtime for the minimized optimizations along with the
runtimes for the different baselines. The second plot shows the coefficient of
determination (the R? score) for the approximated Fourier-sparse function,
evaluated on the test data. We use three baselines to compare the runtime
against. The first baseline is the runtime of -03, which we use as our main
baseline. All other runtimes are relative to the runtime of -03 in the runtime
plots. The second baseline is the runtime when using all flag combinations
under consideration in reference order (as they appear in -03). The third
baseline is the best runtime discovered during measurements when gener-
ating the dataset.

41

REesuLTs

6.

‘0T = U 40y S2403S Y pue sawiuny :1°g aansiy

€z [44 1z oz 61 81 LT 9T ST +1 ET [45 jas ()18 6 8 L 9 S 14 3 Z T 0

00

T
~

0

T
=

0

T
L=}

0

0

FOT

ajewixoidde gT=u = 1PEX3 0T=U N

€z Z Tz oz 6l 81 it 9T ST +1 ET [45 jas ()18 6 8 L 9 S 14 3 Z T 0

r 00

FZo

o

90

80

FOT

F<tl

ajewixoidde gg=u =
painseaw 31saq 0T=U mem £0- Japioul [|e 0T=U mem 10BX%2 0T=U mem

24025

awn

42

Figure 6.1 shows the results of our experiments for n = 10. Here we were
able to evaluate both the complete enumeration (“exact”) and MCTS (”ap-
proximate”). The score is for both methods rather similar, indicating that, at
least for small ns, we don’t sacrifice a measurable amount of accuracy when
using MCTS. The R? scores are high with an average of 0.879042 for the
complete enumeration and 0.879067 for the approximate enumeration. The
runtime plot shows that we, even with only 10 flags, already reach competi-
tive runtimes to -03, where we beat the runtime of -03 with the approximate
solution on average by 0.6188% and are 1.6985% worse on average for the ex-
act solution. Remember that the flags were selected based on the individual
runtime improvements.

There are two interesting points to note further about figure 6.1. For bench-
mark 0 (telecom_adpcm_c), the approximate solution performs a lot better
than the exact solution. This is most likely not due to the different enu-
meration methods used. Instead, note that the best measurement is vastly
smaller than -03. When looking at the randomly generated dataset splits for
both solutions, we can see that the training set for the evaluation of MCTS
did include this best optimization, while the training set for the complete
enumeration did not. This illustrates our earlier point well that the selection
of the query points plays a major role in the success of our algorithms and
can be a starting point for future work.

Benchmark 19 (telecom_CRC32) also stands out when considering the score
plot. For this benchmark, only very few flag combinations have an impact on
the runtime, as we can see from our measurements. Our model is therefore
tasked to mostly fit random noise from our measurements, which justifies
the R? score of about 0.

On average, we find a total of 83 non-zero Fourier coefficients for the ap-
proximate enumeration and 72 for the complete enumeration.

43

REesuLTs

6.

"0€ = U J0j S2403S Y pue sawiuny :g'g unsiy

€z [44 1z oz 61 81 LT 9T ST +1 ET [45 jas ()18 6 8 L 9 S 14 3 Z T 0

00

™~

0

-

0

T
L=}

0

0

FO0T

ajewnxoidde gE=u uuad gE=u e

€z Z 1z oz 6l 81 it 91 ST +1 ET [45 jas (18 6 8 L 9 S 14 € Z T 0

r 00

Feo

Ft0

90

80

FOT

FZT

£0- Fjewixoidde pe=u o0
I3pIO Ul [|B 0E=U e painseaw isaq Qg=u paunseaw jsaq wuad oE=U . wuad gE=U mam

24025

awn

44

Figure 6.2 shows the results for n = 30. With this flag selection, we evaluated
our approach on the phase-ordering problem as well. In the scores plot we
can see that our algorithm has a hard time fitting on the permutation poset.
The average R? score is only 0.154924 for the permutation poset, while fitting
with the full poset gives us an average score of 0.855480. Two explanation
come into mind for why fitting on the permutation poset often produces
bad scores. First it might simply be more difficult to learn a Fourier-sparse
function on the permutation space. Alternatively, the runtime of a program
might be rather stable when reordering flags, and isolating the permuta-
tion differences which produce runtime differences becomes tricky. In other
words, many optimizations are mutually independent. This would again
boil down to the problem of selecting a better set of query points. Such a
claim can also be supported by our earlier example from figure 1.1, which
shows that for this specific benchmark only the order between a few pairs
of optimizations is relevant.

For n = 30 we already discover a drop in sparsity compared to n = 10. For
the optimization poset we find an average of 24 non-zero Fourier coefficients
and for the permutation poset we even only find 14 non-zero Fourier coef-
ficients. Afterwards early stopping kicks in, showing that we overfit rather
early with our training set.

Figure 6.3 shows the results for n = 61. Here we also evaluated the enumer-
ation on the powerset. Since the size of the powerset is vastly smaller than
the size of our full poset, we are able to fully enumerate instead of using
MCTS. However, we still needed to switch to MCTS for minimization.

In this experiment we clearly experience the difficulty of fitting on larger
ns. We still reach an average score of 0.682919 for the full poset, but we
can also see that the score drops remarkably for some benchmarks. On the
other hand, we reach a score of 0.775839 for the powerset and even get better
optimizations there. Compared to -03 we are 0.3696% faster when sticking
to the selection problem with our techniques. When considering the full
poset, our runtime is slightly worse than -03 by 1.0332% on average. The
number of non-zero Fourier coefficients averages at 28 for the full poset and
at 24 for the powerset, showing that overfitting becomes even more of a
problem. Interestingly enough, we are still able to provide relatively good
tits when evaluating on random query points. This might suggest that it is
easy to learn a more coarse grained view over the interactions between the
different optimization flags, while there are a lot of more hidden interactions
which require more care to be discovered.

45

REesuLTs

6.

‘19 = U 10} S2403S Y pue sawiuny :€°g aunsiy

€z [44 1z oz 61 81 LT 9T ST +1 ET [45 jas ()18 6 8 L 9 S 14 3 Z T 0

00

T
™~

0

T
-

0

24025

T
(=}

0

0

0T

mod To=u oo ajewixoidde To=u mem

€z Z 1z oz 6l 81 it 91 ST +1 ET [45 jas (18 6 8 L 9 S 14 € Z T 0

r 00

FZo

Ft0

80

FOT

FZT

painseauw 1saq 19=U mod To9=u
£0- painseaw jsaq mod T9=u J3pio Ul |je T9=U mem ajewixoidde T9=U mam

46

Chapter 7

Conclusion and Future Work

We present a novel algorithmic framework for learning and minimizing
Fourier-sparse estimations of functions over the domain of partial permuta-
tions. Our framework provides a foundation for research on Fourier-sparse
approximations applied to the field of compiler flag optimization, where we
provide an algorithmic and theoretical basis which can be applied to a very
large optimization space. We show that we can apply our algorithms on the
problem of finding runtime-optimal optimization flag combinations. Our
combinations we generate using this method can compete with the highest
optimization level of LLVM even for a small selection of flags. Our algo-
rithms produce good approximations of the underlying real-world poset
function when evaluated on randomly sampled unseen query points.

7.1 Limitations and Future Work

In this thesis, we limited our evaluation scope to a fixed dataset with data
points randomly sampled from our poset of optimizations. Choosing a bet-
ter selection of data points might benefit our methodologies, as our results
already hint at. One approach might be to employ some active learning
techniques, such as Bayesian Optimization, for choosing our query points
more carefully.

In practice a low compilation time is integral for any optimization tech-
nique to be usable. Most of our related work pays respect to this limiting
factor. Since generating our datasets for a program and evaluating them
takes relatively long, our methodologies couldn’t be applied directly into
practice. However, the active learning approach from above might help in
this manner, since we would then find ourselves in the domain of iterative
compilation methods. Furthermore, our algorithms could be implemented
faster by refraining from our generic approach and applying some manual
optimization techniques.

47

7. CONCLUSION AND FUTURE WORK

Another limiting factor in our design is that we do not directly support
flag repetitions in our optimization poset. Furthermore, we do not consider
non-boolean flags. We could solve both of those problems by adjusting our
function domain to a different poset and otherwise use similar techniques.

48

Appendix A

Appendix

A.1 Proof of proposition 2.3 (partial order)
Proof Reflexivity:
a=a=>ACAANInv(a) Cinv(a) = T
Antisymmetry:
a <BAB=2a=ACBABCAAinv(a) Cinv(B) Ainv(B) C inv(a)
= A = BAinv(a) = inv(p)
=a=p
Transitivity:
xXBAB=v=ACBABCT Ainv(a) C inv(B) Ainv(B) C inv(y)

= A CT Ainov(a) C inv(y)
=a =7

A.2 Proof of proposition 3.2 (total order)

Proof Reflexivity:

K< B=> A< AN(A=A—ino(a) <jexinv(a)) = T

49

A. APPENDIX

Antisymmetry:

a<BAB<a= A<iex BA (A =B — inv(a)
B<iex AN (A =B — inv(p)

o

<lex lTlU(‘B))
<lex an)((X))

A\

= A=BA(A=B—inv(a) <jexinv(f))A

I

Transitivity:

)
(A =B — inv(B) <jex inv(a)
A = BAinv(a) <pex inv(p)
A = BAinv(a) = inv(p)
a=p

A ino(B) <jex inov(a)

a<BAB<y= A<xBA(A=B—inv(a)<jexinv(p))A
= A<|T'A(A=B— inv(a) <jexinv(p))A

(B=T = ino(B) Siex ino())A

(A=T > A=BAB=T)
= A< IA

(A =T = ino(@) <iex in0(B) A in0(B) ix in0(7))
= A< TA(A=T — inv(a) <jexinv(y))
= a<y

Strong Connectivity:

x<BVB<a=

=

=
=

A<jex BV A =BAinv(a) <jexinv(B)V

B <jex AV A = BAinv(B) <jex inv(a)

A <jex BV B <jex AV

A = BA (inv(a) <jex inv(B) V inv(B) <jex inv(a))
A<ix BVB<ixAVA=BAT

T

A.3 Selection of Benchmark Programs

telecom_adpcm ¢
automotive_gsortl
consumer_tiff2bw
telecom_gsm
security_blowfish_d
consumer_tiffdither
network_patricia
office_rsynth

NNON Ul W N~ O

8 | consumer_tiffmedian || 16 bzip2e

9 | automotive susans || 17 bzip2d

10 | security_rijndael.e | 18 | automotive_susan._c
11 | consumer_tiff2rgba || 19 telecom _CRC32
12 | security blowfish.e || 20 | telecom_adpcm_d
13 consumer_jpeg-d 21 | network_dijkstra
14 | automotive_ bitcount || 22 | consumer_jpeg._c
15 | automotive_susan_e || 23 consumer_lame

50

Bibliography

(1]

Amir H. Ashouri, William Killian, John Cavazos, Gianluca Palermo,
and Cristina Silvano. A survey on compiler autotuning using machine
learning. ACM Comput. Surv., 51(5), sep 2018.

Amir Hossein Ashouri, Andrea Bignoli, Gianluca Palermo, and
Cristina Silvano. Predictive modeling methodology for compiler phase-
ordering. In Proceedings of the 7th Workshop on Parallel Programming and
Run-Time Management Techniques for Many-Core Architectures and the 5th
Workshop on Design Tools and Architectures For Multicore Embedded Com-
puting Platforms, PARMA-DITAM 16, page 7-12, New York, NY, USA,
2016. Association for Computing Machinery.

Amir Hossein Ashouri, Giovanni Mariani, Gianluca Palermo, and
Cristina Silvano. A bayesian network approach for compiler auto-
tuning for embedded processors. In 2014 IEEE 12th Symposium on Em-
bedded Systems for Real-time Multimedia (ESTIMedia), pages 90-97, 2014.

F. Bodin, T. Kisuki, PM.W. Knijnenburg, M.E.P. O'Boyle, and E. Rohou.
Iterative compilation in a non-linear optimisation space, 1998.

Cameron B. Browne, Edward Powley, Daniel Whitehouse, Simon M.
Lucas, Peter I. Cowling, Philipp Rohlfshagen, Stephen Tavener, Diego
Perez, Spyridon Samothrakis, and Simon Colton. A survey of monte
carlo tree search methods. IEEE Transactions on Computational Intelli-
gence and Al in Games, 4(1):1-43, 2012.

Agakov Bonilla Cavazos, F. Agakov, E. Bonilla, J. Cavazos, B. Franke,
G. Fursin, M. F. P. O’boyle, J. Thomson, M. Toussaint, and C. K. L
Williams. Using machine learning to focus iterative optimization. In
In Proceedings of the International Symposium on Code Generation and Op-
timization (CGO, pages 295-305, 2006.

51

BIBLIOGRAPHY

52

[7]

[10]

[11]

[13]

[14]

[15]

[16]

Timothy M. Chan and Mihai Patrascu. Counting inversions, offline
orthogonal range counting, and related problems, 2010.

Junjie Chen, Ningxin Xu, Peiqi Chen, and Hongyu Zhang. Efficient
compiler autotuning via bayesian optimization. In 2021 IEEE/ACM 43rd
International Conference on Software Engineering (ICSE), pages 1198-1209,
2021.

Keith D. Cooper, Philip J. Schielke, and Devika Subramanian. Optimiz-
ing for reduced code space using genetic algorithms. SIGPLAN Not.,
34(7):1-9, may 1999.

J.W. Davidson, G.S. Tyson, D.B. Whalley, P.A. Kulkarni,].W. Davidson,
G.S. Tyson, D.B. Whalley, and P.A. Kulkarni. Evaluating heuristic opti-

mization phase order search algorithms. In International Symposium on
Code Generation and Optimization (CGO’07), pages 157-169, 2007.

Grigori Fursin, Anton Lokhmotov, and Ed Plowman. Collective knowl-
edge: Towards r amp;d sustainability. In 2016 Design, Automation Test
in Europe Conference Exhibition (DATE), pages 864-869, 2016.

Kyriakos Georgiou, Craig Blackmore, Samuel Xavier-de Souza, and
Kerstin Eder. Less is more: Exploiting the standard compiler opti-
mization levels for better performance and energy consumption. In
Proceedings of the 21st International Workshop on Software and Compilers
for Embedded Systems, SCOPES 18, page 3542, New York, NY, USA,
2018. Association for Computing Machinery.

Wenzel Jakob, Jason Rhinelander, and Dean Moldovan. py-
bind1l — seamless operability between c++11 and python, 2016.
https:/ /github.com/pybind /pybind11.

M. G. Kendall. A new measure of rank correlation. Biometrika,
30(1/2):81-93, 1938.

Levente Kocsis and Csaba Szepesvéri. Bandit based monte-carlo plan-
ning. In In: ECML-06. Number 4212 in LNCS, pages 282-293. Springer,
2006.

A. Koseki, H. Komastu, and Y. Fukazawa. A method for estimating op-
timal unrolling times for nested loops. pages 376-382, 1997. Publisher
Copyright: © 1997 IEEE.; 3rd International Symposium on Parallel Ar-
chitectures, Algorithms, and Networks, I-SPAN 1997 ; Conference date:
18-12-1997 Through 20-12-1997.

Bibliography

[17] Prasad Kulkarni, Stephen Hines, Jason Hiser, David Whalley, Jack
Davidson, and Douglas Jones. Fast searches for effective optimiza-
tion phase sequences. In Proceedings of the ACM SIGPLAN 2004 Con-
ference on Programming Language Design and Implementation, PLDI "04,
page 171-182, New York, NY, USA, 2004. Association for Computing
Machinery.

[18] Chris Lattner and Vikram Adve. LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation. In Proceedings of the 2004
International Symposium on Code Generation and Optimization (CGO'04),
Palo Alto, California, Mar 2004.

[19] S.G. Mallat and Zhifeng Zhang. Matching pursuits with time-frequency
dictionaries. IEEE Transactions on Signal Processing, 41(12):3397-3415,
1993.

[20] George Markowsky. Permutation lattices revised. Mathematical Social
Sciences, 27(1):59-72, 1994.

[21] Sebastian Nowozin. Learning with structured data : Applications to Com-
puter Vision. Doctoral thesis, Technische Universitdt Berlin, Fakultidt IV
- Elektrotechnik und Informatik, Berlin, 2009.

[22] Fabian Pedregosa, Gaél Varoquaux, Alexandre Gramfort, Vincent
Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Pret-
tenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-learn: Machine
learning in python. Journal of machine learning research, 12(Oct):2825-
2830, 2011.

[23] Louis-Noel Pouchet and Tomofumi Yuki. Polybench/c, 2015.

[24] Markus Puschel and JosE M. FE. Moura. Algebraic signal processing
theory: Foundation and 1-d time. IEEE Transactions on Signal Processing,
56(8):3572-3585, 2008.

[25] Markus Piischel and Chris Wendler. Discrete signal processing with set
functions. CoRR, abs/2001.10290, 2020.

[26] Hiroto Saigo, Sebastian Nowozin, Tadashi Kadowaki, Taku Kudo, and
Koji Tsuda. Gboost: A mathematical programming approach to graph
classification and regression. Machine Learning, 75:69-89, 04 2009.

[27] Bastian Seifert, Chris Wendler, and Markus Piischel. Learning fourier-
sparse functions on DAGs. In ICLR2022 Workshop on the Elements of
Reasoning: Objects, Structure and Causality, 2022.

53

BIBLIOGRAPHY

54

(28]

[31]

[32]

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis
Antonoglou, Aja Huang, Arthur Guez, Thomas Hubert, Lucas
Baker, Matthew Lai, Adrian Bolton, Yutian Chen, Timothy Lillicrap,
Fan Hui, Laurent Sifre, George van den Driessche, Thore Graepel, and
Demis Hassabis. Mastering the game of go without human knowledge.
Nature, 550:354—, October 2017.

R. Tibshirani. Regression shrinkage and selection via the lasso. Journal
of the Royal Statistical Society (Series B), 58:267-288, 1996.

S. Triantafyllis, M. Vachharajani, N. Vachharajani, and D.I. August.
Compiler optimization-space exploration. In International Symposium
on Code Generation and Optimization, 2003. CGO 2003., pages 204-215,
2003.

Stephen J. Wright. Coordinate descent algorithms, 2015.

Eliza Wszola. Machine Learning on Manycore CPUs. PhD thesis, ETH
Zurich, Zurich, 2022.

ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Declaration of originality

The signed declaration of originality is a component of every semester paper, Bachelor’s thesis,
Master’s thesis and any other degree paper undertaken during the course of studies, including the
respective electronic versions.

Lecturers may also require a declaration of originality for other written papers compiled for their
courses.

| hereby confirm that | am the sole author of the written work here enclosed and that | have compiled it
in my own words. Parts excepted are corrections of form and content by the supervisor.

Title of work (in block letters):

Compiler Flag Optimization using Fourier-sparse Poset Functions

Authored by (in block letters):

For papers written by groups the names of all authors are required.

Name(s): First name(s):
Hormann Tierry

With my signature | confirm that

- | have committed none of the forms of plagiarism described in the ‘Citation etiquette’ information
sheet.

- | have documented all methods, data and processes truthfully.
- | have not manipulated any data.
- | have mentioned all persons who were significant facilitators of the work.

| am aware that the work may be screened electronically for plagiarism.

Place, date Signature(s)
Ziirich, 02.05.2022 JV‘
7"

For papers written by groups the names of all authors are
required. Their signatures collectively guarantee the entire
content of the written paper.

	Contents
	Introduction
	Motivation
	Related Work
	Background
	Fourier Analysis on discrete domains
	Permutations

	A Poset of Optimizations
	The domain
	Partial Order
	Covering Relation

	Learning Fourier-sparse Poset Functions
	Overview
	Linear Regression and Sparse Approximation
	Computing maximally correlated columns
	Minimizing the Fourier-Sparse Function
	Speeding up the Enumeration
	Selecting the Training Set

	Approximate Poset Enumeration
	Delta-Approximate Enumeration
	Monte Carlo Tree Search

	Implementation and Experimental Setup
	Setup and Usage
	Example Usage

	Runtime Measurement Setup
	Machine Learning Algorithms

	Results
	Conclusion and Future Work
	Limitations and Future Work

	Appendix
	Proof of proposition 2.3 (partial order)
	Proof of proposition 3.2 (total order)
	Selection of Benchmark Programs

	Bibliography

