
setFTs: A package for Fourier
transforms on set functions and its

application to compiler flag
optimization

Bachelors Thesis

Simon Ebner

28.08.22

Chris Wendler

Department of Computer Science, ETH Zürich

Abstract

Set functions are defined as functions over the domain of subsets of a finite
set and map in most cases to the set of real numbers R. Set functions oc-
cur naturally in many applications when we’re trying to assign a value to a
subset. For example when measuring the information gathered restricted to
only a subset of a set of sensors. In recent years there have been advance-
ments in extending the concept of Fourier transform to set functions. This
paved the way for the developement of multiple new algorithms. In this
thesis we present ”setFTs” a Python library that composes these algorithms
into one applicable package. We will then showcase and demonstrate its
features on a case study on compiler flag optimizations.

1

Abstract

Mengenfunktionen (set functions) sind definiert als Funktionen, über den
Bereich der Teilmengen einer endlichen Menge. Sie kommen überall da vor,
wo wir einer Teilmenge einen bestimmten Wert aus der Menge der reellen
Zahlen R zuordnen wollen. Zum Beispiel beim Messen von der Informa-
tion die von einer Teilmenge von Sensoren gesammelt wird. In den letzten
Jahren, kam es zu neuen Erkentnissen bei der Erweiterung des Konzepts
der Fourier-transformation für Mengenfunktionen. Dies hat den Weg bere-
itet für einige neue Algorithmen die auf diesem Konzept basieren. In dieser
Arbeit präsentieren wir die Python library ”setFTs”, welche diese Algorith-
men in ein einfach anwendbares Paket zusammenfasst. Wir wenden dieses
dann auf das Beispiel der Compiler Flaggen Optimisation an, um zu demon-
strieren wie es funktioniert.

2

Contents

Contents 3
0.1 Introduction . 4

0.1.1 Motivation . 4
0.1.2 Contributions . 5

0.2 Signal processing with set functions 6
0.2.1 Set functions . 6
0.2.2 Shifts . 6
0.2.3 Filters . 7
0.2.4 Fourier Transformation 8
0.2.5 Convolution Theorem 8

0.3 Algorithms and Functionalities 9
0.3.1 Fast Fourier Transforms 9
0.3.2 Sparse Fourier Transform 11
0.3.3 Minimization . 16
0.3.4 Shapley Values . 18

0.4 Implementation . 20
0.4.1 Package Structure . 20
0.4.2 setfunctions module . 21
0.4.3 Plotting utilities . 22
0.4.4 Unittests . 26
0.4.5 Installation . 26

0.5 Experiment on Compiler Optimizations 27
0.5.1 Experiment setup . 27
0.5.2 Results . 27
0.5.3 Shapley values . 28

0.6 Future Work . 29
0.6.1 Extending the Library 29
0.6.2 Research on Compiler Optimizations 29

0.7 Addendum . 30

Bibliography 33

3

Contents

0.1 Introduction

This chapter serves as an overview over the topic of this thesis and highlights
the importance of it.

0.1.1 Motivation

Set functions are an important family of functions for applications that are
assigning a value to subsets of a finite set. For example in [9], where the
problem statement of finding which subset of sensors produces the high-
est information gain, can be formulated as a maximization problem on a set
function. Markus Püschel and Chris Wendler introduced in [12] the theoreti-
cal foundation for signal processing on set functions, and with it a definition
for Fourier transform on set functions. They consider 5 bases defined over
different shifts, that each result in a different notion of the Fourier trans-
form. On that theoretical basis [16] introduces a different algorithm for the
Fourier transform that focuses on Fourier sparse set functions. We also in-
clude the extension of that algorithm to the different bases from [6] and a
maximization method from [14]. We then showcase our library on the ex-
ample of compiler flag optimization.
A compiler’s main purpose is translating high-level programming languages
such as java, C++, etc. into lower level programming languages which a
processor can then execute. It’s secondary purpose is optimizing the writ-
ten code into code that can execute more efficiently. Every modern compiler
provides a multitude of optimizations. These optimizations are able to pro-
vide significant speedups to most programs, by changing a program into a
semantically equivalent program that executes faster but provides the same
results. The cost of these optimizations is generally negligible, as a small
increase in compile time, can lead to greatly improved performance at run-
time. A common example for such an optimization is loop-invariant code
motion, where code that would be executed in each loop-iteration, but will
always evaluate to the same value because it is independent of the loop
variable, will be moved outside of the loop and only calculated once. All
modern compilers utilize a combination of optimizations. These interact
with each other and where some interactions may be complementary, oth-
ers might interfere with each other and lead to worse performance. So the
problem statement that we’re trying to solve is:
Given a set of optimization flags N = {o1, o2, ..., on} find the subset s ⊆ N
which leads to the biggest performance improvement.

As the ground set of program optimization has grown,the number of all
possible subsets is 2n and therefore growing exponentially. This makes the
computation of the best possible subset a non-trivial problem to solve that
has become an ongoing subject of research. Determining the best compiler
optimizations, also known as compiler autotuning [3] is not a new problem
and has been known since the late 90s [5]. As such, previous approaches
to solve this problem include iterative methods [5] or machine learning [4].

4

0.1. Introduction

More recently [10] uses a linear regression approach to find Fourier-sparse
approximations of poset functions mapping combinations and orderings of
compiler flags to runtimes.

0.1.2 Contributions

This thesis introduces a PyPi Python library, that composes several Algo-
rithms introduced in various publications into an intuitive library, to provide
a basis on which to perform further research and experiments. Specifically
this thesis focuses on the algorithms for powersets. The library provides the
following functionalities:

• Fast Fourier transform for bases 3, 4 and 5 (WHT)

• Sparse Fourier transform for bases 3, 4 and a weighted variation of 3

• Greedy minimization/maximization for set functions

• Exact minimization/maximization for bases 3 & 4

• Shapley Values for bases 3, 4 and 5

• Various plotting utilities

We provide unittests, documentation and installation guides for all func-
tionalities. We then demonstrate its usability on the example of compiler
flag optimizations.

5

Contents

0.2 Signal processing with set functions

The following chapter summarises the theoretical foundation for set func-
tion Fourier analysis as presented in [12].

0.2.1 Set functions

Over a finite set N = {o1, o2, ...on} of size n a set function s is defined as a
mapping from the powerset of N (denoted with 2N) to the domain of real
numbers R

s : 2N → R, A 7→ s(A). (1)

In other words a set function s relates each subset of N to a real number.
By imposing an order on the subsets of N we can uniquely identify a set
function s with a vector s = s(A)A⊆N of dimension 2N which we will call
the spectrum of s. Here we use the lexicographic Ordering on the set of indi-
cator vectors representing subsets. For example, the set of lexicographically
ordered indicator vectors representing a ground set of size 3 would then be:

{(0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0), (0, 0, 1), (1, 0, 1), (0, 1, 1), (1, 1, 1)}.

0.2.2 Shifts

In one-dimensional time and in two-dimensional signal processing a shift
operator Ea (also called a translation operator) is defined as the operator
that when applied to a function returns its translation.

Ea p(x) = p(x + a) (2)

[12] generalizes that concept to set functions and defines 5 different shift
operators on set functions, each leading to a different discrete-set signal
processing (DSSP) model. In this thesis we will focus on the models 3, 4 and
5, where model 5 is equivalent to the Walsh-Hadamard transform. For those
the shift operators are defined as

(model 3) : EQs(A) = s(A \Q)

(model 4) : EQs(A) = s(A ∪Q)

(model 5) : EQs(A) = s(A \Q ∪Q \ A)

(3)

where Q, A ⊆ N.

6

0.2. Signal processing with set functions

A shift by a single element can be represented by a matrix. We denote the
shift matrix with:

(model 3) : ϕ(oi) = I2n−i ⊗
[

1 0
1 0

]
⊗ I2i−1

(model 4) : ϕ(oi) = I2n−i ⊗
[

0 1
0 1

]
⊗ I2i−1

(model 5) : ϕ(oi) = I2n−i ⊗
[

0 1
1 0

]
⊗ I2i−1

(4)

0.2.3 Filters

A linear combination of shifts is called a filter and is itself a set function,
relating subsets to linear coefficients

h = ∑
Q⊆N

hQEQ (5)

An important property of filters is that they are shift equivariant. This means
that no matter whether you shift first and then apply a filter or the other way
around it will not affect the result. With those filters we can form the DSSP
equivalent of convolutions:

(model 3) : (h ∗ s)(A) = ∑
Q⊆N

h(Q)s(A \Q)

(model 4) : (h ∗ s)(A) = ∑
Q⊆N

h(Q)s(A ∪Q)

(model 5) : (h ∗ s)(A) = ∑
Q⊆N

h(Q)s(A \Q ∪Q \ A)

(6)

A filter can then again be represented by a matrix of form:

ϕ(h) = ∑
X⊆N

h(X)ϕ(X) (7)

7

Contents

0.2.4 Fourier Transformation

The key idea behind the definition of the set Fourier transformation is that
it jointly diagonalizes all filters. In matrix representation this means, that
Fϕ(h)F−1 is a diagonal matrix, where every entry is a linear coefficient h(X)
for X ⊆ N, for every filter matrix ϕ(h), where F is the matrix representation
of the Fourier transform. To do that, it’s enough to diagonalize every shift
matrix ϕ(oi), as matrix multiplication is distributive. F is then of form T⊗n,
and T diagonalizes ϕ(oi). For our models this is true for:

(model 3) : T =

[
1 0
−1 1

]
(model 4) : T =

[
0 1
1 −1

]
(model 5) : T =

1
2

[
1 1
1 −1

] (8)

Note: These are not the only matrices T that work, but they are the ones
implemented in the library, so going forward these are the definitions that
will be used. Alternatively F can also be represented by a formula that
calculates every entry.

(model 3) : F = [(−1)|A\B|ιA⊆B]A,B⊆N

(model 4) : F = [(−1)|A∩B|ιA∪B=N]A,B⊆N

(model 5) : F =
(1

2

)n
[(−1)|A∩B|]A,B⊆N

(9)

Where ιc is the indicator variable for condition c.

ιc =

{
1, i f c is true
0, otherwise

(10)

And A, B ⊆ N are the column and row indices of F, where F is indexed in
lexicographical ordering.
The spectrum of s is denoted as ŝ = Fs and is also a set function and can be
written as:

(model 3) : ŝ(B) = ∑
A⊆N,B⊆A

(−1)|A\B|s(A)

(model 4) : ŝ(B) = ∑
A⊆N,A∪B=N

(−1)|A∩B|s(A)

(model 5) : ŝ(B) =
1
2

n

∑
A⊆N

(−1)|A∩B|s(A)

(11)

0.2.5 Convolution Theorem

As proven in [12] we can then conclude for convolutions with filter h

Theorem 1
ĥ ∗ s = ĥ · ŝ (12)

8

0.3. Algorithms and Functionalities

0.3 Algorithms and Functionalities

In this chapter we will introduce the algorithms and the different function-
alities that make up the provided Python library. It summarises the content
from [12], [16] and [14]. We will not cover all details and will refer to these
papers for proofs and more information. For each algorithm we will first
cover the theoretical background and then provide a short example of how
the library can be used to apply that theory in praxis.

0.3.1 Fast Fourier Transforms

The fast Fourier transform is an algorithm that exploits the special recursive
structure F = T⊗n of the Fourier matrix to calculate the spectrum ŝ for a
given full signal vector s, as was done in [7] for the fast Walsh-Hadamard
transform algorithm. It uses a divide-and-conquer approach, where in each
step of the algorithm it halves the size of the transformation matrix. Below
is an example of the FWHT for a signal of length 4 (i.e ground set size 2)

Fs =


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1




s1
s2
s3
s4

 =

[
1 1
1 −1

] 
[

1 1
1 −1

] [
s1
s2

]
[

1 1
1 −1

] [
s3
s4

]

(13)

=

[
1 1
1 −1

] 
[

s1 + s2
s1 − s2

]
[

s3 + s4
s3 − s4

]
 =


[

s1 + s2
s1 − s2

]
+

[
s3 + s4
s3 − s4

]
[

s1 + s2
s1 − s2

]
−

[
s3 + s4
s3 − s4

]
 =


s1 + s2 + s3 + s4
s1 + s2 − s3 + s4
s1 + s2 − s3 + s4
s1 − s2 − s3 − s4


(14)

The Fourier transform algorithm for the other models follow the same pat-
tern, but use their respective Fourier transform matrices, as defined in (8).

Algorithm 1 Fast Walsh-Hadamard Transform

1: h = 1
2: while h < len(signal) do
3: for i = 0; i < len(signal), i = i + 2h do
4: for j = i, j < i + h, j = j + 1 do
5: x = signal[i]
6: y = signal[j]
7: signal[i] = x + y
8: signal[j] = x− y
9: signal = signal/2

10: h = 2h

Calculating a naive implementation of the Fourier transform for a signal of

9

Contents

length 2n would have a computational complexity of O(22n). With the fast
Fourier transform algorithms we’re able to reduce the complexity to O(n2n).
As mentioned in the introductory chapter, the computation of the complete
signal of a set of compiler optimizations would take 2N queries of the set
function,which is not feasible for modern compilers, where the number of
individual compiler flags can often be three-digits. For example gcc’s op-
timization level -O3 consists of around 100 compiler flags. While this does
not help directly with determining the best possible subset, it allows us to
compute the full spectrum of small enough set functions. In practice this
is true for ground set sizes ≤ 29. We can use this to analyze smaller set
functions and potentially apply our findings to bigger set functions.

Application� �
#import necessary module
from d s f t impor t s e t f u n c t i o n s

#example spectrum of a setfunction with n = 4
5 s i g n a l = [0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 1 0 , 11 , 12 , 13 , 14 , 15]

#create a callable setfunction representation of that
spectrum

s e t f u n c t i o n = s e t f u n c t i o n s . WrapSigna l (s i g n a l)
#apply fast fourier transform for the desired model
f f t 3 = s e t f u n c t i o n . t r a n s f o rm f a s t (model =’ 3 ’)

10 f f t 4 = s e t f u n c t i o n . t r a n s f o rm f a s t (model = ’ 4 ’)
fwht = s e t f u n c t i o n . t r a n s f o rm f a s t (model = ’ 5 ’)
#print spectrum of transformed setfunction
p r i n t (f f t 3 . c o e f s)
p r i n t (f f t 4 . c o e f s)

15 p r i n t (fwht . c o e f s)� �
Listing 1: Example usage of fast Fourier transform.

Plotting the coefficients of these transforms against the cardinalities of their
respective frequencies (Fig. 1) gives us insight as to why calculating the
Fourier transformation can be useful for working with set functions. In
this small example we see that the information contained in the original set
function was distributed across all cardinalities, while the Fourier transfor-
mations compresses the information into only a few cardinalities. Therefore
we can completely reconstruct the original set function when we know all
non-zero Fourier coefficients.

10

0.3. Algorithms and Functionalities

Figure 0.1: Normalized average coefficient plotted agianst the cardinality of their correlating
frequency for the example from Listing 1 (FFT4 coincides with the FWHT in this case)

0.3.2 Sparse Fourier Transform

Ideally we would like to be able to compute the Fourier transformation of
a set function without having to evaluate it for all subsets first, like we
need to do for the fast transformation presented earlier. The sparse Fourier
transform algorithm presented in [16] provides a way to do exactly that for
Fourier-sparse set functions, while only imposing mild conditions on the
Fourier coefficients.

Fourier Sparsity and Support

Definition 0.3.1 We call the set

supp(ŝ) = {B : ŝ(B) ̸= 0} (15)

the support of set function ŝ

Definition 0.3.2 A set function s is called k-Fourier-sparse if

supp(ŝ) = B1, ..., Bk (16)

where we assume that k is significantly smaller than 2N

Therefore it’s sufficient to find the non-zero Fourier coefficients and their
respective support to exactly learn a set function. Interestingly our different
Fourier transform models each lead to a different sparsities. This means that
a function can be sparse in one model, but not for others.

11

Contents

Sparse FT with known support

Under the assumption that the Fourier support supp(ŝ) or a small superset
B ⊇ supp(ŝ) is known, the problem of learning the set function s can be
simplified to finding a set of frequencies A ⊆ 2n such that

sA = F−1
AB ŝB (17)

has a unique solution, where sA = (s(A))A∈A is the vector of s queried at
every element of A and F−1

AB is the F−1 indexed by the elements of A,B
Then according to [12]:

Theorem 2 Let s be k-Fourier-sparse with supp(ŝ) = {B1, ..., Bk} = B.
Let A = {N \ B1, ..., N \ Bk}. Then F−1

AB is invertible and s can be perfectly recon-
structed from the queries sA

Therefore the problem of computing the Fourier coefficients can be reduced
to finding the associated support.

Sparse FT with unknown support

Finding the support of a set funtion s is not a trivial task, and doing it
naively would mean checking all 2n possible frequencies. The method pre-
sented in [16] introduces the notion of restricted set functions, which are set
functions defined over a subset M ⊆ N

Definition 0.3.3 For any M ⊆ N we denote the restricted set function with

s ↓2M : 2M → R, A 7→ s(A) (18)

As defined and proven in [16] we can then formulate the Fourier transform
for model 4 as

ŝ ↓2M(B) = ∑
A⊆N\M

ŝ(A ∪ B) (19)

Under the assumption that there are no cancellations in the summation of
(19) we can deduce that every restricted set function can be related to a less
restricted set function.

ŝ ↓2M(B) = ̂s ↓2M∪{x}(B) + ̂s ↓2M∪{x}(B ∪ {x}) (20)

for any x ⊆ N \ M. This implies that whenever ŝ ↓2M(B) is zero then
̂s ↓2M∪{x}(B) and ̂s ↓2M∪{x}(B ∪ {x}) will be zero too. Therefore we have

B =
⋃

B∈supp(ŝ↓2M (B))

{B, B ∪ {x}} (21)

with supp(̂s ↓2M∪{x}) ⊆ B which allows us to use Theorem 1 to calculate
̂s ↓2M∪{x} . So now we can compute the Fourier coefficients of a restricted set

function ̂s ↓2M∪{x} , if we have the Fourier coefficients of ŝ ↓2M . This allows us

12

0.3. Algorithms and Functionalities

to build a chain starting with M0 = ∅ and s ↓2∅ (∅) = s(∅), where in each
iteration we increase the set Mi by adding the next element then compute
the superset B for supp(ŝ ↓2Mi) and apply Theorem 1 to calculate the coeffi-
cients of it. After repeating this n-times we will have added all elements of
N and therefore we have computed the coefficients of ŝ ↓2Mi = ŝ

Algorithm 2 Sparse Set Fourier Transform (SSFT)

1: M0 ← ∅
2: ŝ ↓2∅(∅)← s(∅)
3: for i = 1, ..., n do
4: Mi ← Mi−1 ∪ {xi}
5: A ← ∅,B ← ∅
6: for B ∈ supp(̂s ↓2Mi−1) do
7: B ← B ∪ {B, B ∪ {xi}}
8: A ← A∪ {Mi \ B, Mi \ (B ∪ {xi})}
9: sA ← (s(A))A∈A

10: x← solve sA = F−1
ABx f or x

11: for B ∈ B with xB ̸= 0 do
12: ŝ ↓2Mi (B)← xB

13: return ŝ ↓2Mn

This algorithm is guaranteed to compute the Fourier transform of a k-sparse
set function, under conditions that guarantee that no cancellation occurs.
This is the case for set functions with Fourier coefficients sampled from inde-
pendent continuous probability distributions. Compared to the fast Fourier
transform presented above, which needs O(2n) queries and O(n2n) opera-
tions, the sparse algorithm manages to solve the problem with a maximum
of O(nk− k log k) queries and O(nk2) operations.

Filtering

As seen before the SSFT only works on a limited set of set functions. But
some important families of set functions like graph-cuts are not included.
To extend the set of set functions that work, we can utilize the convolution
theorem, where we find a random filter h so that SSFT works with proba-
bility one for the convolution s ∗ h. (12) states that we can then recover the
coefficients by dividing pointwise with the frequency response of h

ŝ = ĥ ∗ s/h̄ (22)

To minimize the added overhead of the filtering , we choose h to be a one-
hop-filter, meaning a filter where h(B) = 0 for |B| ≥ 1 This extension results
in a new complexity of O(n2k − nk log k) queries and O(n2k + nk2) opera-
tions.

13

Contents

Other Models

We’ve seen how we defined the SSFT for model 4 above, and consequentially
we can define it for all other Fourier bases presented in [12]. Implemented in
the library are the SSFT algorithms for model 3, 4 and a weighted variation
of 3. These adaptations for model 3 and its weighted variation are from [6]
For model 3, the equation equivalent to (18) is

̂s ↓N\M∪2M(B) = ∑
A⊆N\M

(−1)|A| ŝ(A ∪ B) (23)

Analogous we can then construct the chain of subproblems to solve. We
start with ̂s ↓N∪2∅ and in each step we add the next element, compute the
superset and apply Rheorem 1 to get the coefficients. After n steps we end
up with the coefficients of the original set function. The weighted variation
of model 3 is based on the Fourier transform matrix

(model 3) : T =

[
1 0
− 1√

3
2√
3

]
(24)

and it’s equivalent to (18) is

̂s ↓N\M∪2M(B) = 2−|N\M| ∑
A⊆N\M

(
√

3)|A| ŝ(A ∪ B) (25)

from there we proceed like we do for model 3

Application� �
#import necessary modules
from d s f t impor t s e t f u n c t i o n s
from d s f t impor t d a t a s e t s
from d s f t impor t p l o t t i n g

5

#load compiler optimization setfunction for benchmark program
(susan_c)

comp opt = da t a s e t s . l o ad bench (bench = ’ su san c10 ’)
#create sparse estimations of the fourier transforms
comp op t s s f t 3 = comp opt . t r a n s f o rm s p a r s e (model = ’ 3 ’ , eps =

1e−3, f l a g g e n e r a l = Fa l s e)
10 comp opt ss f tW3 = comp opt . t r a n s f o rm s p a r s e (model = ’W3 ’ , eps

= 1e−3, f l a g g e n e r a l = Fa l s e)
c omp op t s s f t 4 = comp opt . t r a n s f o rm s p a r s e (model = ’ 4 ’ , eps =

1e−3, f l a g g e n e r a l = Fa l s e)
#plot spectral energy
p l o t t i n g . p l o t s p e c t r a l e n e r g y ([comp opt s s f t 3 , comp opt ssftW3

, c omp op t s s f t 4] , [’ SSFT3 ’ , ’SSFTW3 ’ , ’SSFT4 ’] , n=10)� �
Listing 2: Example usage of sparse Fourier transform.

Applying the sparse Fourier transform works in a very similar way to ap-
plying the fast transform. With the difference, that the set function we apply

14

0.3. Algorithms and Functionalities

it to can be a queryable function, where we do not have to know all 2n set
function evaluations. Additionally we can create sparse function approxi-
mations by setting the eps parameter. Higher values for eps lead to a more
sparse function, as it means the threshold below which we consider a coef-
ficient to be zero will be set higher. We have to take into consideration that
this is not the intended use of the algorithm and that it is not guaranteed
to work when the set function is not exactly sparse and when some of the
coefficients cancel out. To assure that we get correct results we should, if
possible, strive for an absolute error of the Fourier coefficients of 1.

15

Contents

0.3.3 Minimization

A common goal across many applications of our previously defined set-
function theory, is the minimization or maximization of a set function. We
denote it with

argmax
a

s(a) argmin
a

s(a). (26)

This also applies to the problem of finding the optimal subset of compiler
optimizations that we’re discussing in this thesis. To this end our Python
library contains 2 different algorithms that can be used to compute the indi-
cator vector that maximizes or minimizes a certain set function.

Greedy Algorithm

The first method implemented in our library is the greedy algorithm. It
starts out with the empty set s = ∅ and then in each iteration searches for
the element si /∈ s which when added to s will lead to the biggest increase in
the set function output. It repeats this process until a specified cardinality
threshold is reached, or until adding more elements will not further increase
the output.

Algorithm 3 Greedy set function Maximization

1: s f ← input set f unction
2: s← ∅
3: for c = 1,...,cardmax do
4: for si /∈ s do
5: valuemax = s f (s)
6: if s f (s ∪ si) > valuemax then
7: elementmax = si
8: valuemax = s f (s ∪ si)
9: else if s f (s ∪ si) = valuemax then

10: choose randomly whether to choose i
11: s← s ∪ elementmax
12: return s

This algorithm allows us to find a solution in O(n2) queries of the set func-
tion which is a significant reduction from the O(2n) queries we would need
if we were to check all subsets. Unfortunately this algorithm doesn’t guar-
antee that for all functions the best possible solution will be found. There
are situations, where choosing a certain element, will lead to missing out
on finding an optimal solution that does not contain that element. However
for the class of submodular functions it is guaranteed to find a solution that
statisfies

max : s(x̄) ≥ (1− ϵ)s(xopt), min : s(x̄) ≤ (1− ϵ)s(xopt), (27)

where x̄ is the found solution and xopt would be the best possible solution.
[8]

16

0.3. Algorithms and Functionalities

� �
#import necessary modules
from d s f t impor t s e t f u n c t i o n s
from d s f t impor t d a t a s e t s
#load callable compiler optimization setfunction for

benchmark program (susan_c)
5 comp opt = da t a s e t s . l o a d c omp i l l e r o p t (benchmark = ’ su s an c ’ ,

n=10)
#perform greedy minimization on original setfunction
min imize r , v a l u e = comp opt . m i n im i z e g r e edy (n=10,max card =

10)
#Sparse Fourier transform algorithms
comp op t s s f t 3 = comp opt . t r a n s f o rm s p a r s e (model = ’ 3 ’)

10 #perform greedy minimization on sparse transform
min im i z e r s 3 , v a l u e s 3 = comp op t s s f t 3 . m i n im i z e g r e edy (n=10,

max card = 10)� �
Listing 3: Example usage of the greedy minimization.

MIP based Algorithm

The second method is the implementation of Theorem 1 from [14], where the
maximization problem is reformulated as a mixed integer program (MIP)
that utilizes Fourier sparsity. They redefine the problem of maximization

argmax
x,β∈{0,1}k

⟨ŝ, α⟩ argmin
x,β∈{0,1}k

⟨ŝ, α⟩ (28)

where ⟨x, y⟩ denotes the euclidian scalar product, as a set of constraints that
are specific to the chosen model:

(model 3) :

αi ≥ 1− yT(1− x)

αi ≤ 1− yT(1− x) + Cβi

αi ≤ C ∗ (1− βi)

(29)

(model 4) :

αi ≥ 1− yTx

αi ≤ 1− yTx + Cβi

αi ≤ C ∗ (1− βi)

(30)

(model 5) :

αi = −2βi + 1

βi = yTx− 2γi

γi ∈ Zk

(31)

These constraints can then be fed into a specialized solver such as scipopt.

17

Contents

� �
#import necessary modules
from d s f t impor t s e t f u n c t i o n s
from d s f t impor t d a t a s e t s
#load full compiler optimization setfunction for benchmark

program (bitcount)
5 comp opt = da t a s e t s . l o a d b en ch b i t c o un t 1 0 ()

#Sparse Fourier transform algorithms
comp op t s s f t 3 = comp opt . t r a n s f o rm s p a r s e (model = ’ 3 ’ ,

f l a g g e n e r a l = Fa l s e)
#perform MIP minimization on sparse transform
min im i z e r s 3 , v a l u e s 3 = comp op t s s f t 3 . minimize MIP ()� �

Listing 4: Example usage of the MIP-based minimization.

0.3.4 Shapley Values

Shapley values introduced by Lloyd Shapley in 1951 [13] is a method to
measure the gain per player in a coalition game (set function). In our case
we can use it as a way to measure and compare how much each compiler
flag contributes to the speedup. Formally the Shapley value of the i-th player
in a coalition game s is defined as

φi(s) = ∑
A⊆N\{i}

|A|!(n− |A| − 1)!
n!

(s(A ∪ {i})− s(A)) (32)

According to [15], for sparse set functions with supp(ŝ) = B we can write it
as

φi(s) = φi(∑
B∈B

ŝ(B) f B) = ∑
B∈B

ŝ(B)φi(f B) (33)

where f B denotes the B-th fourier base vector (the B-th column of the inverse
Fourier transform matrix F−1. φ(f B) once again depends on the model we
choose

(model 3) : φ(f B) =

{
1
|B| , i f i ∈ B

0, otherwise

(model 4) : φ(f B) =

{
− 1
|B| , i f i ∈ B

0, otherwise

(model 5) : φ(f B) =

{
(−1)|B|−1
|B| , i f i ∈ B

0, otherwise

(34)

18

0.3. Algorithms and Functionalities

� �
#import necessary modules
from d s f t impor t s e t f u n c t i o n s
from d s f t impor t d a t a s e t s
#load full compiler optimization setfunction for benchmark

program (bitcount)
5 comp opt = da t a s e t s . l o a d b en ch b i t c o un t 1 0 ()

#Sparse Fourier transform algorithms
comp op t s s f t 3 = comp opt . t r a n s f o rm s p a r s e (model = ’ 3 ’ ,

f l a g g e n e r a l = Fa l s e)
#calculate shapley_values
s h a p l e y v a l u e s = comp op t s s f t 3 . s h a p l e y v a l u e s ()

10 #print shapley_values
p r i n t (s h a p l e y v a l u e s)
#OUTPUT:
#[1.17470218e−04 2.47338553e−05 4.76721742e−05 3.16573169

e−05
5.26569980e−05 −2.59871229e−04 −5.47762424e−04 −2.68371264

e−03
15 # −1.14258840e−03 −6.19581143e−03]� �

Listing 5: Example usage of the shapley value function.

19

Contents

0.4 Implementation

In this chapter we will present our PyPi package setFTs and introduce the
important modules and classes. For more in-depth information, we also cre-
ated a full documentation for the modules setfunctions and plotting, which
can be found at: https://ebners.github.io/setFTs_docs/

0.4.1 Package Structure

The library contains various Python modules with implementations of the
algorithms and functionality mentioned above.

• set functions:The module that a user will mainly interact with. Con-
tains classes for set function representations and their Fourier trans-
formed variations with functions to calculate maximization, shapley
values and the spectral energy respectively.

• plotting: Functions to help visualize the generated data

• transformations: Provides classes that instantiate Fourier transform
objects, that allow to perform both fast and sparse Fourier transforma-
tion on a set function object.

• minmax: module for MIP-based minimization or maximization.

• datasets: Loader functions for some included datasets for set functions

• utils: Contains utility functions for generating full sets of indicator
values.

20

0.4. Implementation

0.4.2 setfunctions module

The library is designed in a way that a user will usually only have to interact
with the setfunctions module. This was chosen to make the library easy to
understand and apply to new set funtions. Here we will cover the basics
of this module. That module consists of a class called ’set function’ and
multiple subclasses:

• WrapSignal: Used for instantiating a set function representation, when
all setfunction evaluations are already known. Class instantiation works
with a list of 2n float values that represent the set function evaluations
in lexicographical ordering.
(e.g. sf = setfunctions.WrapSignal([0,1,2,3,4,5,6,7])

• WrapSetFunction:Used for instantiating a set function representation
for queryable set functions. Class instantiation needs a parameter s,
that is a callable function that takes a one-dimensional numpy array as
an input and returns a float value, and the groundset size n.
(e.g. sf = setfunctions.WrapSetFunction(examplesf,n)

• SparseDSFTFunction: Allows the instantiation of a sparse Fourier
transformed set function. An object of this class can be created directly
with its non-zero Fourier coefficients and their respective frequencies
or by applying either of the transform functions (fast or sparse) on ei-
ther of the wrapper functions above.
(e.g ssft3 = setfunctions.SparseDSFT3Function(freqs,coefs)
or ssft3 = sf.transform sparse(model = ’3’,eps = 1e-3)

21

Contents

0.4.3 Plotting utilities

The second module that might be of interest for users of this library is the
plotting module, which provides utility functions to create plots for setfunc-
tions. The plotting functions are all based on the well-documented plotting
library matplotlib.

• plot freq card: Creates a histogram or line plot of the number of fre-
quencies of each cardinality in a setfunction. (Figure 0.2)

Figure 0.2

• plot spectral energy: Creates a histogram or line plot showing the
average normalized coefficients for each cardinality. (Figure 0.3)

Figure 0.3

22

0.4. Implementation

• plot min greedy/plot max greedy: Line plot of the smallest/largest
set function value found by the greedy minimization or respectively
maximization algorithm when restricted to a maximal cardinality. (Fig-
ure 0.4)

Figure 0.4

• plot max mip/plot min mip: Line plot of the smallest/largest set func-
tion value found by the MIP-based minimization or respectively max-
imization algorithm when restricted to a maximal cardinality. (Figure
0.5)

Figure 0.5

23

Contents

• plot scatter: Creates a scatter plot showing the distribution of the co-
efficient size for each cardinality. (Figure 0.6)

Figure 0.6

• plot reconstruction error: Creates sparse approximations of a setfunc-
tion by varying the eps parameter and plots the reconstruction error.
(Figure 0.7)

Figure 0.7

24

0.4. Implementation

• plot reconstruction error biggest coefs Calculates the sparse Fourier
transformations and then plots the reconstruction errors when con-
strained to their k-biggest coefficients. (Figure 0.8)

Figure 0.8

• plot minimization found Functions like plot reconstruction error, but
performs for each eps value also the MIP minimization algorithm(Figure
0.9)

Figure 0.9

25

Contents

• plot minimization found biggest coefs Similar to
plot reconstruction error biggest coefs, but applies a minimization al-
gorithm at each step.(Figure 0.10)

Figure 0.10

0.4.4 Unittests

To ensure that the code works correctly, we wrote unittests for almost all
basic functions of our library. For testing our fast and sparse algorithms
we test on small known examples whether our Fourier transform computes
the correct coefficients, and whether we get the same results by calling the
transformed function as we do when calling the original set function on ran-
domly generated signals. We use the same random signals to test whether
the minimization found by the MIP-minimizer is the same as the smallest
value in the random signal. Shapley values have the property that they are
the same for every model presented, which allows us to calculate them for
random signals and compare the results of different models for equality.

0.4.5 Installation

setFTs uses the Python library pySCIPOpt for the implementation of the
MIP-based minimization algorithm. pySCIPOpt requires a working installa-
tion of the SCIP Optimization Suite. The creators of pySCIPOpt recommend
using conda as it installs SCIP automatically. And allows the installation of
pySCIPOpt in one command:

conda install −−channel conda− f orge pyscipopt

The installation of our package works over PyPi and therefore a working
installation of pip is needed. The pip command to install setFTs is the fol-
lowing:

pip install setFTs

26

0.5. Experiment on Compiler Optimizations

0.5 Experiment on Compiler Optimizations

0.5.1 Experiment setup

To apply our library to compiler optimizations, we use the framework pro-
vided by [10]. It allows us to create a queryable set function that measures
the runtime of a specified benchmark program compiled with the compiler
flags specified in the query. To produce more stable results it repeats each
measurements multiple times, removes outliers and takes the mean of the
remaining measurements. We use this to create full datasets of all set func-
tion evaluations for 8 different benchmark programs with a collection of 10
compiler flags. The flags used for these examples are:
-foptimize-sibling-calls, -freorder-blocks-algorithm=stc, -ftree-pre, -fschedule-
insns2, -fexpensive-optimizations, -fvect-cost-model, -ffinite-loops, -floop-
unroll-and-jam, -flra-remat, -fvect-cost-model=dynamic
which are 10 of the around 100 compiler flags of optimization level -O3. We
limit ourselves to 10 flags in this case, because we create a full set of set func-
tion evaluations to be able to compare the solution of our algorithms with
the best possible solution that could be obtained by the naive approach. The
calculation of bigger sets would take a relatively long time and the smaller
sets are enough for demonstration purposes. In general the set functions
obtained by querying a benchmark program are not Fourier sparse and it
will therefore take 2n queries to calculate their Fourier transforms even with
our sparse algorithm. As mentioned before, the querying of a large amount
of subsets is time intensive, and therefore we would like a way to calculate
it using a minimal amount of queries.
We know that we can create a sparse approximation of the Fourier trans-
form by setting the eps parameter of the sparse algorithm higher. While it
is not advised to do this, as this can lead to inconsistent and wrong results
in some cases, we will do it here for experimentation purposes.
We then create such a sparse approximation for each benchmark program
and run the MIP-based minimization algorithm on them. This produces an
approximation of the minimizing subset, but will in most cases not be the
optimal solution.

0.5.2 Results

Table 0.1 in the addendum shows the resulting data of this experiment. For
all programs we tested an eps value of eps = 1e − 4 and increased it to
eps = 1e− 3 for programs where the number of queries for the sparse ap-
proximation was still relatively high.
Both models show a similar performance in these examples, where the min-
imization found is relatively close to the optimal solution for a majority of
programs. But unfortunately for some benchmark programs the results are
above the average set function value and therefore too far off the minimal
value to be considered a valid result. The amount of queries required is
significantly reduced in both. Compared to the minimal value possible, the

27

Contents

average relative error of the minimal value of the approximated set func-
tion is 0.030631665 for model 3 and 0.029863149 for model 4. We repeated
this experiment with the filtered SSFT algorithm, which resulted in better
results, but the reproduction of these values was inconsistent. To counter
this inconsistency we tried repeating the experiment multiple times for each
program. This resulted in some cases in more queries done than would be
needed in the naive approach. These additional results can be found in the
addendum under table 0.2.
The results also varied strongly depending on the eps parameter chosen. By
plotting the reconstruction error for different eps values (Figure 0.9), we can
see why that is the case.

Figure 0.11: Comparison of the reconstruction error of sparse approximations with the SSFT3
(left) and the SSFT3+ (right)

0.5.3 Shapley values

Another experiment we performed was the calculation of the Shapley values
for each of the benchmark programs to determine which single individual
compiler flag had the largest impact on the runtime. To be able to compare
the Shapley values between different benchmark programs, we normalize
by dividing each value by the sum of all Shapley values of that program.
These normalized Values can be found in table 0.3 of the addendum. Of the
10 compiler flags we consider in this small example,”-ftree-pre”, ”-floop-
unroll-and-jam” and ”-freorder-blocks-algorithm=stc” seem to be making
the biggest impact on average. According to [1] ”-ftree-pre” is a flag that
enables partial redundancy elimination on trees, which means that it elimi-
nates redundancies for expressions that are redundant in some paths of the
programm but might not be redundant in other paths.
And ”-floop-unroll-and-jam” is responsible for loop unrolling and jaming,
where for nested loops the outer loop will be unrolled and the resulting in-
ner loops will be fused. This allows more reusage in the loop.
”-freorder-blocks-algorithm=stc” sets the reordering algorithm for basic code
blocks to software trace cache which groups code that is often executed to-
gether.

28

0.6. Future Work

0.6 Future Work

0.6.1 Extending the Library

There exist more related algorithms that could be implemented in future it-
erations of this library. For example, we could implement our sparse Fourier
transform algorithm for model 5, where we would need to redefine the sub-
problem as is discussed in addendum E of [16]. Another algorithm that
would be worth implementing is the Sparse Walsh Hadamard transform
presented in [2]. By applying ideas from compressive sensing over finite
fields it provides a way to calculate the WHT in O(kn log2 k log n log d) op-
erations and O(kd log n) queries, if we know that all frequencies that make
up the support supp(ŝ) of the Fourier transform ŝ are of low order, meaning
that their cardinality is lower than some threshold d.
Another idea how the library could be expanded is by not only restricting
ourselves to set functions, but extending it to also include functionalities
over partially ordered sets, specifically meet/join lattices aswell. [11] intro-
duces the theoretical foundation for that. Partially ordered sets have the
added benefit, that there is an imposed partial order over the set which
would enable us to also take different permutations of the subset into ac-
count.

0.6.2 Research on Compiler Optimizations

The experiment we conducted highlighted some important limitations of
this approach. One of them is the problem of creating consistent Fourier
sparse approximations. As discussed in the results section, the estimations
we created with the sparse algorithm worked a lot better for some programs
than for others. A way to possibly refine the results of our approach would
be to fine tune the choice of our eps parameter and allow for values that
are more fine-grained than eps = 1e− i for i ∈ R, because during testing it
occured multiple times that for a given program the amount of coefficients
obtained was too high, when using one value for eps, but too low when
using the next higher value. We can also consider a different approach to
create approximations. Current research on optimizing compiler flags as
in [10] is directing its focus towards using machine learning to learn and
minimize estimations of set functions or in this case even poset functions.
Further, the experiments conducted here were limited to a selection of 10
compiler optimizations. This is just a fraction of all that would be available,
so further research needs to be done on a wider subset of optimizations.

29

Contents

0.7 Addendum

FT3 FT4
B

en
ch

m
ar

k
Pr

og
ra

m
M

in
.V

al
ue

A
vg

.V
al

ue
M

in
.E

st
FT

3
Q

ue
ri

es
Es

t
FT

3
re

l.
Er

ro
r

Es
t

Ft
3

bi
tc

ou
nt

0.
04

0.
04

70
52

05
5

0.
04

00
56

28
9

0.
00

55
55

5
su

sa
n

c
0.

00
37

17
95

0.
00

42
86

96
0.

00
49

38
12

6
0.

03
87

44
47

su
sa

n
e

0.
00

67
91

0.
00

70
92

0.
00

68
31

19
0.

00
60

37
4

su
sa

n
s

0.
05

63
13

0.
05

81
98

0.
05

73
13

66
1

0.
01

30
87

56
su

sa
n

s
ep

s3
0.

05
63

13
0.

05
81

98
0.

05
74

5
17

0.
02

01
90

72
bz

ip
2d

0.
04

87
5

0.
05

30
67

0.
05

08
75

75
0

0.
01

60
20

51
bz

ip
2d

ep
s3

0.
04

87
5

0.
05

30
67

0.
05

53
5

34
7

0.
02

94
76

92
bz

ip
2e

0.
08

05
0.

08
32

45
0.

08
33

12
76

5
0.

04
65

83
85

bz
ip

2e
ep

s3
0.

08
05

0.
08

32
45

0.
08

28
12

11
0.

02
87

20
5

jp
eg

c
0.

00
23

0.
00

26
77

0.
00

24
31

94
0.

02
26

08
7

jp
eg

d
0.

00
10

28
0.

00
12

84
0.

00
14

25
55

0.
10

99
22

18

B
en

ch
m

ar
k

Pr
og

ra
m

M
in

.V
al

ue
A

vg
.V

al
ue

M
in

.E
st

FT
4

Q
ue

ri
es

Es
t

FT
4

re
l.

Er
ro

r
Es

t
Ft

4
bi

tc
ou

nt
0.

04
0.

04
70

52
0.

04
02

22
88

0.
00

55
5

su
sa

n
c

0.
00

37
18

0.
00

42
87

0.
00

40
67

42
0.

09
38

67
67

su
sa

n
e

0.
00

67
91

0.
00

70
92

0.
00

69
95

71
0.

03
00

39
76

su
sa

n
s

0.
05

63
13

0.
05

81
98

0.
05

85
62

75
2

0.
03

99
37

49
su

sa
n

s
ep

s3
0.

05
63

13
0.

05
81

98
0.

05
74

5
38

0.
02

01
90

72
bz

ip
2d

0.
04

87
5

0.
05

30
67

0.
05

12
81

94
4

0.
05

19
17

95
bz

ip
2d

ep
s3

0.
04

87
5

0.
05

30
67

0.
05

27
75

57
4

0.
08

25
64

1
bz

ip
2e

0.
08

05
0.

08
32

45
0.

08
49

91
2

0.
05

46
58

39
bz

ip
2e

ep
s3

0.
08

05
0.

08
32

45
0.

08
25

63
0.

02
48

44
72

jp
eg

c
0.

00
23

0.
00

26
77

0.
00

23
71

20
0.

03
08

69
57

jp
eg

d
0.

00
10

28
0.

00
12

84
0.

00
12

55
21

7
0.

22
08

17
12

Table 0.1: Result of sparse approximation on different benchmarks

30

0.7. Addendum

FT3+ FT4+

B
en

ch
m

ar
k

Pr
og

ra
m

M
in

.V
al

ue
A

vg
.V

al
ue

M
in

.E
st

FT
3

Q
ue

ri
es

Es
t

FT
3

re
l.

Er
ro

r
Es

t
Ft

3
bi

tc
ou

nt
0.

04
0.

04
70

52
05

5
0.

04
02

22
22

34
0.

00
55

55
5

su
sa

n
c

0.
00

37
17

95
0.

00
42

86
96

0.
00

38
62

50
0.

03
87

44
47

su
sa

n
e

0.
00

67
91

0.
00

70
92

0.
00

68
32

45
0.

00
60

37
4

su
sa

n
s

0.
05

63
13

0.
05

81
98

0.
05

70
5

46
9

0.
01

30
87

56
su

sa
n

s
ep

s2
0.

05
63

13
0.

05
81

98
0.

05
74

5
17

0.
02

01
90

72
bz

ip
2d

0.
04

87
5

0.
05

30
67

0.
04

95
31

65
5

0.
01

60
20

51
bz

ip
2d

ep
s2

0.
04

87
5

0.
05

30
67

0.
05

01
87

37
0.

02
94

76
92

bz
ip

2e
0.

08
05

0.
08

32
45

0.
08

42
5

24
8

0.
04

65
83

85
bz

ip
2e

ep
s2

0.
08

05
0.

08
32

45
0.

08
28

12
49

0.
02

87
20

5
jp

eg
c

0.
00

23
0.

00
26

77
0.

00
23

52
71

0.
02

26
08

7
jp

eg
d

0.
00

10
28

0.
00

12
84

0.
00

11
41

12
0.

10
99

22
18

B
en

ch
m

ar
k

Pr
og

ra
m

M
in

.V
al

ue
A

vg
.V

al
ue

M
in

.E
st

FT
4

Q
ue

ri
es

Es
t

FT
4

re
l.

Er
ro

r
Es

t
Ft

4
bi

tc
ou

nt
0.

04
0.

04
70

52
05

5
0.

04
02

22
22

23
0.

00
55

55
5

su
sa

n
c

0.
00

37
17

95
0.

00
42

86
96

0.
00

38
65

18
0.

03
95

51
37

su
sa

n
e

0.
00

67
91

0.
00

70
92

0.
00

69
39

12
0.

02
17

93
55

su
sa

n
s

0.
05

63
13

0.
05

81
98

0.
05

66
88

36
2

0.
00

66
59

21
su

sa
n

s
ep

s2
0.

05
63

13
0.

05
81

98
0.

05
67

5
32

0.
00

77
60

2
bz

ip
2d

0.
04

87
5

0.
05

30
67

0.
05

08
75

62
4

0.
04

35
89

74
bz

ip
2d

ep
s2

0.
04

87
5

0.
05

30
67

0.
05

17
5

22
0.

06
15

38
46

bz
ip

2e
0.

08
05

0.
08

32
45

0.
08

25
24

3
0.

02
48

44
72

bz
ip

2e
ep

s2
0.

08
05

0.
08

32
45

0.
08

21
25

34
0.

02
01

86
34

jp
eg

c
0.

00
23

0.
00

26
77

0.
00

23
39

25
0.

01
69

56
52

jp
eg

d
0.

00
10

28
0.

00
12

84
0.

00
11

41
12

0.
10

99
22

18

Table 0.2: Result of sparse approximation with random one hop filtering on different benchmarks

31

Contents

B
en

ch
m

ar
k

Pr
og

ra
m

”-
fo

pt
im

iz
e-

si
bl

in
g-

ca
ll

s”

”-
fr

eo
rd

er
-

bl
oc

ks
-

al
go

ri
th

m
=s

tc
”

”-
ft

re
e-

pr
e”

”-
fs

ch
ed

ul
e

-i
ns

ns
2

”-
fe

xp
en

si
ve

-
op

ti
m

iz
at

io
ns

”
”-

fv
ec

t-
co

st
-

m
od

el
”

”-
ffi

ni
te

-
lo

op
s”

”-
flo

op
-

un
ro

ll
-

an
d-

ja
m

”

”-
flr

a-
re

m
at

”

”-
fv

ec
t-

co
st

-
m

od
el

=d
yn

am
ic

”
bi

tc
-0

.0
1

0.
00

0.
00

0.
00

0.
00

0.
02

0.
05

0.
25

0.
11

0.
59

su
sa

n
c

0.
12

0.
01

0.
11

0.
02

0.
17

0.
22

0.
03

0.
12

-0
.2

6
0.

45
su

sa
n

e
0.

13
-0

.1
1

0.
39

0.
01

0.
07

0.
12

0.
14

-0
.0

2
0.

28
-0

.0
1

su
sa

n
s

0.
18

0.
19

0.
19

0.
04

0.
34

0.
03

0.
01

-0
.0

1
0.

03
0.

00
bz

ip
2d

0.
12

0.
32

0.
10

-0
.0

1
-0

.0
4

0.
01

-0
.0

5
0.

13
0.

20
0.

21
bz

ip
2e

-0
.1

0
0.

49
1.

54
0.

23
-0

.3
8

-0
.3

7
-0

.3
0

1.
00

-0
.3

7
-0

.7
5

jp
eg

c
-0

.1
0

0.
10

0.
08

0.
05

-0
.1

3
0.

02
-0

.1
7

0.
05

0.
52

0.
58

jp
eg

d
0.

07
0.

15
0.

24
0.

02
0.

06
0.

08
0.

29
0.

15
-0

.0
1

-0
.0

5
A

ve
ra

ge
0.

05
0.

14
0.

33
0.

05
0.

01
0.

02
0.

00
0.

21
0.

06
0.

13
Su

m
0.

46
1.

29
2.

98
0.

41
0.

10
0.

17
0.

00
1.

89
0.

56
1.

14

Table 0.3: Normalized Shapley values of different benchmark programs

32

Bibliography

[1] Accessed: 2022-08-26. url: https://gcc.gnu.org/onlinedocs/gcc/
Optimize-Options.html.

[2] Andisheh Amrollahi et al. “Efficiently Learning Fourier Sparse Set
Functions”. In: Advances in Neural Information Processing Systems. Ed.
by H. Wallach et al. Vol. 32. Curran Associates, Inc., 2019. url: https:
//proceedings.neurips.cc/paper/2019/file/c77331e51c5555f8f935d3344c964bd5-

Paper.pdf.

[3] Amir H. Ashouri et al. “A survey on compiler Autotuning using ma-
chine learning”. In: ACM Computing Surveys 51.5 (2019), pp. 1–42. doi:
10.1145/3197978.

[4] Amir Hossein Ashouri et al. “COBAYN: Compiler Autotuning Frame-
work Using Bayesian Networks”. In: ACM Trans. Archit. Code Optim.
13.2 (June 2016). issn: 1544-3566. doi: 10.1145/2928270. url: https:
//doi.org/10.1145/2928270.

[5] François Bodin et al. “Iterative Compilation in a Non-linear Optimisa-
tion Space”. English. In: Proceedings of the 1998 Workshop on Profile and
Feedback Directed Compilation (PFDC’98). 1998.

[6] Enrico Brusoni. “Learning Set Functions that are Sparse in Better Non-
Orthogonal Fourier Bases”. In: ().

[7] Fino and Algazi. “Unified Matrix Treatment of the Fast Walsh-Hadamard
Transform”. In: IEEE Transactions on Computers C-25.11 (1976), pp. 1142–
1146. doi: 10.1109/TC.1976.1674569.

[8] M. L. Fisher, G. L. Nemhauser, and L. A. Wolsey. “An analysis of ap-
proximations for maximizing submodular set functions—II”. In: Math-
ematical Programming Studies (1978), pp. 73–87. doi: 10.1007/bfb0121195.

[9] Carlos Guestrin, Andreas Krause, and Ajit Paul Singh. “Near-optimal
sensor placements in Gaussian Processes”. In: Proceedings of the 22nd
international conference on Machine learning - ICML ’05 (2005). doi: 10.
1145/1102351.1102385.

[10] Tierry Hörmann. “Compiler Flag Optimization using Fourier-sparse
Poset Functions”. 2022.

33

Bibliography

[11] Markus Puschel, Bastian Seifert, and Chris Wendler. “Discrete signal
processing on meet/join lattices”. In: IEEE Transactions on Signal Pro-
cessing 69 (July 2021), pp. 3571–3584. doi: 10.1109/tsp.2021.3081036.

[12] Markus Puschel and Chris Wendler. “Discrete signal processing with
set functions”. In: IEEE Transactions on Signal Processing 69 (2021), pp. 1039–
1053. doi: 10.1109/tsp.2020.3046972.

[13] Lloyd Stowell Shapley. “Notes on the N-person game — II: The value
of an N-person game”. In: (1951). doi: 10.7249/rm0670.

[14] Jakob Weissteiner et al. “Fourier analysis-based iterative combinatorial
auctions”. In: Proceedings of the Thirty-First International Joint Conference
on Artificial Intelligence (2022). doi: 10.24963/ijcai.2022/78.

[15] Chris Wendler. “Machine learning on non-Euclidean domains: power-
sets, lattices and posets.” In: ().

[16] Chris Wendler et al. “Learning Set Functions that are Sparse in Non-
Orthogonal Fourier Bases”. In: Proceedings of the AAAI Conference on
Artificial Intelligence 35.12 (May 2021), pp. 10283–10292.

34

