
Meet & Join Lattice Convolutional Neural
Networks

Hugo Polsinelli

April 5, 2021

Contents

1 Introduction 2

2 Background 3
2.1 Geometric Deep Learning . 3
2.2 Case Study: Deep Learning on Graphs 4
2.3 Lattice Signal Processing . 6

3 Lattice Convolutional Neural Networks 10
3.1 Definitions . 10
3.2 Implementation . 12
3.3 Framework Validation and Experiments 15

3.3.1 Sums on a Powerset Lattice 15
3.3.2 Ranked data classification on a Permutation Lattice 17

4 Structured Output Learning using Lattice Convolutional Neural Net-
works 21
4.1 Structured output Learning . 21
4.2 Protein Function Prediction . 22

4.2.1 Problem description . 22
4.2.2 Related work . 24
4.2.3 Experimental Setup . 27
4.2.4 Results . 27

4.3 Multi-Label classification . 29
4.3.1 Revisiting the Mallows Mixture Model experiment 30
4.3.2 Pascal VOC . 30

5 Conclusion 32

1

1 Introduction
The recent success of Deep Learning methods applied to data lying in a Euclidean
space, such as image and audio, has led to the emergence of Geometric Deep
Learning (GDL). The main motivations behind GDL is to transpose to irregu-
lar data domains proven Deep Learning techniques such as Convolutional Neural
Networks (CNN). Indeed, CNNs have shown to be a very powerful tool to operate
on N-dimensional grid-like structures. This can be partly explained thanks to their
ability to extract localized features from the data by using shared weights, often
called filters, and leverage the shift-invariance property of common classification
tasks. However, some real life problems cannot be easily represented in an Eu-
clidean space, often making the use of Convolutional Neural Networks impracti-
cal. Such tasks include: link prediction on a social graph [KW17], protein-protein
interactions networks [Vas+20], modeling physical systems [San+18] and learn-
ing combinatorial optimization algorithms [Dai+18]. The non-Euclidean structure
of these problems implies that the data cannot be described in a unified coordinate
system and there exists no vector space structure nor any translation-invariance
property. As a consequence, the convolution operation is not defined. In this the-
sis we will explore a special case of non-Euclidean domains: partially ordered
sets and lattices. In order to gain more insight on how to define a convolution
operation on non-Euclidean data domains, we will first expose the algebraic sig-
nal processing framewrok [PM08] (ASP). ASP is an axiomatic approach to signal
processing with linear shift invariant filters on an algebra. We will see that from
this framework, many graph signal processing frameworks can be derived.

Contribution The focus of this thesis are lattices and partially ordered sets.
Partially ordered sets are directed acyclic graphs, and lattices are directed acyclic
graphs with some additional properties. The meet and join of two elements in a lat-
tice return the largest lower and the smallest upper bound respectively. [PSW20]
utilize the meet and join operators to define lattice convolutions. This thesis pro-
vides three main contributions: first we implement the Discrete Lattice Signal
Processing (DLSP) framework as laid out by [PSW20]. Second, we evaluate the
implementation’s correctness by assessing its performance on two synthetic tasks
for which the Lattice Convolutional Layers should theoretically be able to solve
the task perfectly, i.e, one can derive a closed form solution to these problem for
the filters in the lattice domain. Lastly we make use of the framework on two real
world structured output learning tasks. The hope is that using a lattice CNN adds
enough prior about the output space into the model, such that it can improve the
classification metrics. We benchmark our results against related work.

2

2 Background
In the first subsection, we will formally define Geometric Deep Learning and
present an overview of the current techniques in the field. This will allow us to
introduce the convolution on graphs. Then, we will motivate the need for a new
signal processing framework that operates on lattices, which we will present in
the following subsection.

2.1 Geometric Deep Learning
According to [Bro+17], geometric deep learning can be described as an umbrella
term for emerging techniques attempting to generalize structured deep neural
models to non-Euclidean domains such as graphs and manifolds. Geometric learn-
ing problems can be distinguished into two types. In the first class of problems the
task is to characterize the structure of the underlying data whereas the second set
of problems deals with analyzing functions defined on non-Euclidean spaces. In
this thesis we will focus on problems falling in the second category, i.e, analyzing
functions on a fixed non-Euclidean space.

Structure of the domain A common setting in the first class of problems
is often referred to as manifold learning or dimensionality reduction, and is an
instance of unsupervised learning. Assume the data is given as a set of points
with an underlying lower-dimensional structure embedded in a higher dimen-
sional non-Euclidean space, the task is then to recover the hidden low-dimensional
structure. Examples of manifold learning include locally linear embedding (LLE)
[Row00], stochastic neighbor embedding (t-SNE) [MH08] and various deep mod-
els [HCL06]. In network analysis applications such as social graphs, where nodes
represent users and edges are drawn between two nodes to indicate the presence
of a relation, an common task can is to detect communities.

Data on the domain The second task of analyzing functions on a non-
Euclidean space can be further broken down into two sub-tasks: where the do-
main is fixed or when multiple domains are given. For example, assume we are
given the traffic in a city represented as a time-dependant signal on the vertices of
a city’s road graph. The task is to predict the traffic given the past activity. In this
scenario the road graph is assumed to be fixed. The focus of this thesis will be on
analyzing functions on fixed non-Euclidean domains. An intuitive way to extend
signal processing to any fixed algebra is provided by Algebraic Signal Processing
framework (ASP).

3

[PM06] and [PM08] introduce ASP as an axiomatic approach to signal pro-
cessing with linear shift invariant filters on an algebra. At its core, ASP is defined
as a tuple (A,M,φ), where the signal space is cast as an algebra algebra A, the
filter space as a module M, and φ generalizes the concept of z-transform to a bi-
jective linear mapping from the signal to the filter space. Once the signal model
and the shift operator are chosen, ASP provides the basic tools for filtering, con-
volving and computing the Fourier transform. Using ASP, one can derive many of
the current graph signal processing (GSP) frameworks by defining the appropri-
ate shift operator, such as graph adjacency matrices [SM13], or graph Laplacian
filtering [Shu+13].

Methods and applications of signal processing on graphs have already been
reviewed in [Zho+19], in particular in order to define an operation analogous to
the convolution in the spectral domain which allows to generalize Convolutional
Neural Networks models to graph signal processing. This thesis focuses on prob-
lems falling into the second sub task of the second task, i.e, analyzing functions
living in a fixed non-Euclidean space, hence Graph Neural Networks important
thus we will outline their motivations.

2.2 Case Study: Deep Learning on Graphs
Having exposed the main challenges of GDL, we will now review the current
techniques in order to analyze functions on a fixed graph. Graphs are a structure
used to model objects, as nodes, and their respective interactions, as edges. A
number of non-Euclidean real world problems can be meaningfully represented
as graphs such as social networks, protein-protein interactions and knowledge
graphs, hence the aim is to develop machine learning techniques that can lever-
age this structure to predict relations (i.e link prediction), node classification or
clustering techniques.

It is important to gain some intuition on how graph convolutional networks
operate, since the aim of this paper is to define, implement and use lattice convo-
lutional networks. The latter can, and should, be viewed as an analogy to convo-
lutions on graphs, but instead of having the input indexed by a graph they operate
of data indexed by a lattice. Hence this subsection is key to gain some insight into
what we hope to archive using lattice convolutional neural networks.

Graph Neural Networks The concept of GNN was first proposed by [Sca+09].
The target is to learn a state embedding hv ∈ R which contains the information of
neighborhood for each node. The state embedding hv is an s-dimension vector
of node v and can be used to produce an output ov such as the node label. Let f
and g be respectively the local transition function and the local output function.

4

f is shared among all nodes and updates the node state to its neighborhood and g
describes how the output is produced. Formally we have:

hv = f (xv,xco[v],hne[v],xne[v])

ov = g(hv,xv)

where xv,xco[v],hne[v],xne[v] respectively denote the features of v, the features of its
edges, the states and the features of the nodes in the neighborhood of v. Let H, O,
X, and XN be the vectors constructed by stacking all the states, all the outputs, all
the features, and all the node features, respectively. The we can rewrite the above
equations in a compact form:

H = F(H,X)

O = G(O,XN)

Using the following classic iterative scheme for iteratively computing the state at
the next timestep:

Ht+1 = F(Ht ,X)

GNNs provide a good intuition as to how one might interact with graphs, but they
still lack concrete analogies with convolutions in the Euclidean space. Ideally, we
would like to exploit a shift invariance property of graphs, which would in turn
give rise to the notion of convolution on a graph.

Convolution on graphs Convolutional graph neural networks find their mo-
tivations in convolutional neural networks in the Euclidean space. The latter have
produced impressive results on Euclidean domains due to their ability to extract
localized spatial features through the use of a shared filter bank. Stacking multi-
ple layers on top of each other allows the network to compose locally extracted
features at a higher level and thus increasing the upper layer’s field of view. How-
ever CNNs can only operate on N-dimensional grids such as images or sequences
which makes their usage impractical for non-Euclidean data. By comparison,
graphs have no natural coordinate system nor vector space structure. This im-
plies that there is no clear way to define the shift operation on graphs, hence the
convolution does not exist.

If we assume the data domain to be fixed, i.e, the input signal always lies in
same space, one can define an operation analogous to convolution in the spectral
domain. This in turn allows for the generalization of CNNs to graphs. The general
idea behind graph convolutional neural networks is to define a so-called spectral
network [Bru+14]. They allow for the generalization of convolutions on graph

5

through the use of a Graph Fourier transform, which stems from a generalization
of the Laplacian operator on the grid to the graph Laplacian [Shu+13]. Observe
that graph neural networks are more general, i.e., one can write a GNN update
rule that is equivalent to a graph convolutional network.

We have seen how using the spectral network allows us to define the convolution
operation on graphs, giving rise to all kinds of graph convolutional neural net-
works using different shift operators. Observe that, after suitable ordering of the
vertices, the adjacency matrix of a direct acyclic graph (of which lattices are a
special case) are stricly triangular. Consequently, the eigenmatrix is always zero,
hence it cannot be diagonalized. This provides further motivation to our lattice
processing framework.

2.3 Lattice Signal Processing
In this thesis we consider signals indexed by a meet/join lattices, and use the
discrete lattice signal processing framework as defined by [PSW20]. Consider a
finite set L with a partial order ≤ also called a partially ordered set or poset and
denote the elements of L as lowercase a, b, c... Formally a poset satisfies for all
a,b,c ∈L :

(a) a≤ a

(b) a≤ b and b≤ a =⇒ a = b

(c) a≤ b and b≤ c =⇒ a≤ c

We say that b covers a, noted as a ≺ b if a < b and there is no c ∈L such that
a < c < b. A meet-semilattice is a poset L for which a meet operation returning
the greatest lower bound of a and b exists for every pair in L . We denote this
operation by a∧ b. By symmetry we can also construct a join semilattice as a
poset where the join ∨ operations returns the lowest upper bound for each pair of
nodes in L . A poset which is both a meet and join semilattice is called a lattice.

For example the powerset, i.e the set of all subsets of any finite set S, with ∩
as the meet and ∪ as the join operation is a lattice [WAP20]. Note that any semi
lattice can be extended to a full lattice simply by adding a maximal (minimal)
element that is larger (lower) than all x ∈L . This guarantees the existence of a
join (meet) for each pair in L .

6

Shifts and Convolutions on a Lattice Next we introduce the lattice signal
processing framework as outlined in [PSW20]. Discrete Lattice Signal Processing
(DLSP) is defined through the shift operation, which then allows to derive the
notions of convolution, Fourier transform and frequency response. We consider
real signal s indexed by the elements of a finite meet semilattice L of size n:

s : L → R, x 7→ sx (1)

and we write s = (sx)x∈L . The set of signals is an n-dimensional vector space, for
which the ordering is arbitrarily defined as the topological order of the nodes in
L .

The construction of the shift as defined by [PSW20] uses the meet ∧ operator
as the shift. For any a ∈L the shift by a is defined as (sx∧a)x∈L . One can easily
show that the shift operator is a linear mapping on the space of signals: for any
pair of signals s and s′ and any scalars α,β ∈ R shifting by a ∈L yields, for all
x ∈L :

(αs+β s′)x∧a = α(sx∧a)+β (s′)x∧a (2)

The main difference between discrete time signal processing and DLSP is that
in the former a signal can be shifted by any integer value m but any shift can be
obviously decomposed as 1×m, hence any shift can be expressed as a repeated
shift by 1, thus we say the shift by 1 generates all others. In the case of Discrete
Lattice Signal Processing, Lattice theory shows that the generators of the meet
semilattice are all the meet-irreducible elements of L ; i.e all a ∈ L such that
there exists no b,c ∈L with b,c 6= a such that a = b∧ c. Namely, an element of
L is meet-irreducible (or join-irreducible) if and only if it cannot be expressed as
the meet (join) of two other distinct elements of L .

Now that we can shift by any a ∈L we can define the notion of convolution.
Let h = (hq)q∈L be a filter, then we have:

h∗ s =

(
∑

q∈L
hqsx∧q

)
x∈L

(3)

Since the meet operation is commutative; i.e a∧ b = b∧ a for any a,b ∈L , all
shifts commute with each other and with all filters hence the Discrete Lattice
Signal Processing framework is shift-invariant.

Pure Frequency To compute the Fourier transform associated to the shift
operation defined above, we need to find the signals that are eigenfunctions of
all shifts; i.e the pure frequencies. Because the shifts commute, we are guaran-
teed that these signals exists. In our Lattice Signal processing setting the pure

7

frequency, noted fy, is defined for every y ∈L as:

fy = (1y≤x)x∈L (4)

Were 1y≤x is the indicator function of y ≤ x; i.e: 1y≤x = 1 ⇐⇒ y ≤ x. To show
that fy is indeed the pure frequency associated to the DLSP shift, we shift the pure
frequency by some q ∈L . Observe that if y ≤ q then y ≤ x∧ q ⇐⇒ y ≤ x and
thus (1y≤x∧q)x∈L = fy. Otherwise y≤ x∧q never holds and fy = 0.

Frequency Response Using equation (4), we can now derive the frequency
response of a filter h = (hq)q∈L at frequency y ∈L as follows:

h̄y = ∑
q∈L , y≤q

hq (5)

Notice that the frequencies are indexed by y∈L this means that the frequency re-
sponse lies in the same space as the signal, i.e, it follows the partial order induced
by L .

Discrete Lattice Transform Let ŝ = (ŝy)y∈L denote the Fourier coefficient
of a signal s. Using equation (4) we can compute the inverse Fourier transform:

sx = ∑
y∈L

1y≤x ŝy = ∑
y∈L , y≤x

ŝy (6)

Using the Moebius inversion formula from [SF99] to inverse equation (6) we can
compute the Fourier transform:

ŝy = ∑
x≤y

µ(x,y)sx (7)

Where µ(·, ·) denotes the Moebius function defined by recursion as:

µ(x,x) = 1, for any x ∈L ,

µ(x,y) =− ∑
x≤z<y

µ(x,z), x 6= y,

We call the DLSP Fourier transform defined in equation (7) the discrete lattice
transform, noted DLTL . Hence the spectrum of a signal s can now be computed
as a matrix vector product, provided that both the DLT and the vector represen-
tation of s use the same ordering (unless stated otherwise we will always use the
topological order of the poset). Further observe that the frequency response from
equation (5) can be rewritten in matrix form.

ŝ = DLTL s (8)

h = DLT−1
L
> h (9)

8

Convolution theorem Putting everything together, we obtain the following
convolution theorem for the Discrete Lattice Signal Processing framework:

ĥ∗ s = h� ŝ (10)

where� denotes a vector point-wise multiplication. Observe that contrary to con-
ventional Discrete Time signal processing, the frequency response and the Fourier
transform are computed differently, using respectively equations (5) and (7).

Notice how the convolution theorem does not make use of the shift operations
but only the discrete lattice transform. This means that we can relax our condition
of requiring the meet and join to be defined for every pair in the poset. Hence our
framework, while only theoretically proven for lattices, can be applied to partially
ordered sets which are ubiquitous in machine learning tasks. Indeed, any direct
acyclic graph defines a partially ordered set.

Relation with DTSP and GSP DSLP can be viewed as a form of GSP for
lattices. Since lattices are a special kind of direct acyclic graphs, this implies that
we can always find an ordering of the nodes such that the adjacency matrix is
upper triangular. On the other hand, one major difference is that, in DLSP all the
irreducible elements are generators, whereas in GSP there is only one generating
shift. Moreover, the DSLP shifts do not always operate among the neighbors, but
in a way that captures the partial order structure of the domain.

One major difference between DLSP and DTSP is that, in the latter one can
leverage the fact that there exists and intuitive way to define subspaces of the input
domain, i.e, 3×3 convolutional filter can be viewed as a filter with the same shape
as the input padded with zeros. On the other hand, in DLSP there is no natural
way to extend a sublattice. This means that contrary to convolutions on Euclidean
data, we cannot perform operations that will alter the shape of the signal, such as
pooling or similar transformations. This unfortunately imposes the constraint that
our input domain must be fixed.

Table 1 summarizes the main equations of DLSP and compares them with DTSP
in order to give more intuition on how in relates to the convolution in the Eu-
clidean space.

9

Concept DTSP DLSP graph adjacency
Signal (sk)k∈[n] (sx)x∈L (sv)v∈V

Basic shift (sk−1)k∈[n] (hq∧b)q∈L , b meet irred. (Aks)v∈V

Convolution ∑0≤m<n hmsk−m ∑q∈L hqsx∧q ∑k hkAks

Table 1: Comparison of DLSP, finite DTSP and graph adjacency GSP. For sim-
plicity we denote the index range with [n] = (0, ...,n−1)

3 Lattice Convolutional Neural Networks
In the next section, we will show how we used the convolution theorem and equa-
tions (8) and (9) to implement lattice convolutional layers both in the lattice do-
main and spectral domain. We will extend the idea of localized filters to lattice
signal processing, analogous to one-hop filters typically used in GNNs [Sca+09].
We will expose the optimizations techniques that have been implemented to de-
crease the computational overhead during both training and evaluation.

Lastly, we will validate our implementation by running our framework on two
synthetic tasks. The aim of the first one is to assess the correctness of our im-
plementation, whereas the second experiment can be thought of as a transition
problem. Namely, data points are sampled from the true distribution hence it is
synthetic but the problem of classifying ranked data is a common real world ap-
plication.

3.1 Definitions
In order to implement the DLSP framework, we will heavily rely on equation (10),
hence we will try to analyze it in detail. Observe that using successively equations
(5), (8) and (9), we can rewrite the convolution as:

h∗ s = DLT−1 ĥ? s
= DLT−1 (h� ŝ)
= DLT−1 (h� (DLT s)) (11)

= DLT−1 ((DLT−1> h)� (DLT s)) (12)

Notice that in order to compute a forward pass, we do not need to know the value
of the filter in the lattice domain, hence this leads us to the following definition. If
the network is trained to learn the filter without computing its frequency response,
we say that it is operating in the spectral domain, otherwise we say that it operates
in the lattice domain

10

Spectral and Lattice domain Optimizing the filter in the spectral domain
(using equation 11) has the advantage of requiring less computational overhead.
Indeed, it saves one matrix multiplication per forward pass to compute the fre-
quency response. This is useful when we do not care about the value of the filter
in the lattice domain. On the other hand, if we want to impose a constraint on the
filter, it will most likely be in the lattice domain (using equation 12). Hence the
framework must be able to learn the filter in both domains. Next we look at a way
to add some constraints to the filter in the lattice domain.

Localized filters Similarly to techniques like one-hop filters in Graph Con-
volutional Neural Networks [KW17], we extend the notion of localized filters
to the Lattice signal processing framework by defining the one-hop filter h on a
meet-semilattice L as follows:

(h∗ s)HL1
=

 ∑
q∈HL1

hqsx∧q


x∈L

where HL1 = {a : a ∈L , a irreducible}

This can be naturally extended to k-hop filters by the following recursion:

HLk = {a∧b : a,b ∈ HLk−1} for k > 1

Intuitively, this means that in the case of one-hop filters we only consider the shifts
associated to irreducible elements. In the case of 2-hop filters we extend H to the
shifts of the irreducibles elements and all of their pairwise meets. This procedure
is repeated iteratively for k-hop filters. Recall from section 2.2 that shifts by
irreducible elements generate all others, thus there exists a large enough k such
that HLk = L . Further observe that in order to implement these localized filters,
we need to be able to impose some constraints to the filter in the lattice domain.
Hence the framework provides the possibility to train the lattice convolutional
layer both in the lattice and spectral domain as we will see later. k-hop filters on
join-semilattices are defined analogously by replacing the meet by a join where
appropriate in the equations above.

Lattice convolutional layer Formally, we define a lattice convolutional layer
on a lattice L as follows:

1. The input is given by nc signals s = (s(1), ...,s(nc)) ∈ R|L |×nc ;

2. The output is given by n f signals t = LΓ(s) = (t(1), ..., t(n f)) ∈ R|L |×n f ;

11

3. The layer applies a bank of set function filters Γ=(h(i, j))i, j with i∈{1, ...,nc}
and j ∈ {1, ...,n f } and a point-wise non-linearity σ resulting in

t(j) = σ

(
nc

∑
i=1

h(i, j) ∗ s(i)
)

Observe that the lattice convolutional layer never uses the meet and join opera-
tions, thus we can extend the lattice convolutional layer to operate on partially
ordered sets, i.e, signals indexed by a directed acyclic graph.

In the following section, we will discuss in depth the DLSP framework implemen-
tation details.

3.2 Implementation
The Discrete Lattice Signal Processing framework described in section 2.2 is im-
plemented as a fully functional pytorch layer [Pas+19]. The aim is to provide to
an end-user a black box for interacting with lattices inside the pytorch framework.
First we briefly outline the pytorch library and how it operates, next we provide an
overview of the framework’s architecture. Third, we dive into the details of each
of the modules that compose our implementation. Finally we discuss the technical
optimizations that have been implemented in order to minimize the computational
overhead, as well as some possible improvements.

The pytorch library In pytorch, Deep Learning models are just Python pro-
grams: defining layers and composing modules are all expressed using the famil-
iar syntax of Python. This solution insures that novel neural network architecture
such as the discrete lattice signal processing framework can be implemented eas-
ily. Indeed, the Lattice CNN layer is simply expressed as a Python class, which is
constructed from a Lattice object in order to initialize the layer’s internal param-
eters and whose forward method processes signals from the lattice. Furthermore,
any end-user can create a new model by composing individual Lattice CNN lay-
ers. Finally, we leverage the automatic differentiation capabilities of pytorch to
compute the gradient on-the-fly for our forward pass, since it is just a sequence of
matrix multiplications. Thus the backward method does need to be implemented.

Framework architecture The framework is divided into two components:
the lattice objects and the pytorch lattice CNN layer. The purpose of the former

12

is to store the topology of the lattice, order the elements according to the partial
order defined by the lattice and compute the discrete lattice transforms, inverse
transforms and frequency response. The Lattice CNN layer are constructed using
a lattice object. This allows the layer to initialize its own internal parameters
according to the lattice and other user-specified settings we will explore in the
next paragraphs. The framework supports meet and join semi-lattices as well as
full lattices.

Cover graph Lastly, we define the notion of cover graph of a lattice L .
Let G = (V,E) be a directed graph where V = {x : x ∈ L } and E = {(b,a) :
a,b ∈L such that b≺ a}. Namely, G is a directed graph where the nodes are the
elements of L and we draw an edge between two nodes a and b if and only if b
covers a. This is a useful tool to intuitively represent the partial order induced by
a partially ordered set, hence the implementation will make an extensive use of it
to instantiate lattice objects in our implementation. We also define the adjacency
matrix AL of the cover graph, which we call the cover matrix, as follows:

AL = (aL)i j =

{
1, if i covers j
0, otherwise

where we use by convention the topological order of the lattice to order the columns
of AL . Using this ordering implies that the covers matrix is upper triangular.

Lattice object The lattice objects API is subdivided into three classes: meet
and join semi-lattices and lattices. The latter simply inherits its properties from
the two previous. These objects can be constructed in two ways: either using a
networkX graph representing the covers graph of the (semi)-lattice, or by using
the covers matrix. At creation, the lattice class will compute the partial ordering
of the lattice elements, as well as the Fourier transform and the inverse Fourier
transform. Both will be stored as matrices, with their rows and columns ordered
by the topological ordering defined by the lattice.

The purpose of these objects is to provide the backbone structure to the lat-
tice convolutional layers. Indeed, as our problem setting is that of fixed domains
we assume that the lattice will not change during computation. Notice that this
class only serves as the skeleton to store the topology data, whereas the signal is
processed by the lattice CNN layers. Once the data domain has been computed
and the lattice object encapsulating that domain created, we can now initialize as
many lattice CNN layers as we want simply by passing the lattice object to the
layer’s constructor. Next we detail how the layers operate on lattice signals once
they have been created.

13

Lattice convolutional layer Our framework provides two types of convo-
lutional layers: MeetConv and JoinConv. By default these layers operate in the
spectral domain, i.e, they train the spectral representation of the filter, never mak-
ing use of the frequency response by using equation (11). This is done to avoid
unnecessary computational overhead during the forward and backward passes.
However, this behavior can nonetheless be modified to explicitly train the filters
in the lattice domain by using equation (12). This can be useful in the case where
the user wants to use localized filters or apply any other kind of explicit constraint
to the filter in the lattice domain.

Akin to discrete time signal processing implementations, such as the one in
the pytorch framework, the user can specify the number of input and output chan-
nels to the MeetConv and JoinConv layers as well as the presence or absence of
a bias term. The user can also provide a mask when constructing a layer and, in
so doing, the mask is applied as a point-wise multiplication on the lattice domain
representation of the filter during the forward pass. Hence, for both MeetConv
and JoinConv layers the framework implements the convolution in the spectral
domain, the lattice domain and localized filtering by masking the filter in the lat-
tice domain.

Thanks to the modularity of pytorch, the Lattice CNN layers behave exactly
like any other in the pytorch framework. Indeed, they can be easily composed
by stacking multiple of them in a module, but also with layers that are not part
of this framework, provided they do not change the signal, such as activation
functions, dropout, batch normalization or linear layers. Lattice convolutional
layers operate similarly to any other convolutional layer: the output value of a
meet or join convolutional layer with input size (b,c,n) and output (b,d,n) can be
precisely described as:

out(bi,d j) = bias(d j)+
c−1

∑
k=0

filter(d j,k)∗ signal(bi,k) (13)

where b is a batch size, c and d respectively the number of input and output chan-
nels, n the size of the (semi)-lattice and ∗ denotes the DLSP convolution operator
as defined in equation (3). Next we look at some implementation tricks that al-
lowed us to optimize the execution of the framework.

Optimization The Einstein summation convention (einsum for short) is a
notational convention that implies summation over a set of indexed terms in a for-
mula. By rewriting equation (13) using the einsum notation, we can leverage the
optimized einsum package [SG18]. It can significantly reduce the overall execu-
tion time of einsum-like expressions by optimizing the expression’s contraction

14

order. We observe a five fold speedup on the forward pass against the conven-
tional matrix multiplication. For example, the convolution in the spectral domain,
DLT−1 (h� (DLT s)), can be rewritten using the einsum notation as follows:

from op t_e insum import c o n t r a c t
o u t = c o n t r a c t (’nm , com , ml , bc l−>bon ’ , DLT_inv , F , DLT, x)

where DLT and DLT_inv respectively denote the lattice Fourier transform and
inverse Fourier transform, F denotes the filter bank with multiple input and output
channels and x is the input signal. Note that this piece of code also extends the
above equation to multiple input and output channels as well as batch processing.

An other optimization can be made by observing that all the layers store the
Fourier transform and inverse Fourier transform. By sharing both matrices across
all the layers of a same module we can save some space on the GPU and gain
some time, as pytorch does not have to load the DLT stored in the next layer
during the forward pass. Using this technique we observe a 10% speedup as well
as a memory economy proportional to the number of layers in the module.

Finally, because we are using the matrix representation of the Fourier trans-
forms we are limited to lattices with at most 215 elements, otherwise the matrix
multiplication becomes intractable. If the adjacency matrix of lattice is sparse,
one can further improve the implementation by using the torch.sparse API. It pro-
vides a way to store and interact with sparse matrices in an efficient manner, thus
increasing the maximum number of elements supported by the framework to 218.
An other possible improvement could be to implement the fast Fourier transform
algorithm described in [Bjö+16]. This lowers the computational complexity of
the forward pass to O(µn) where µ is the number of irreducible elements in the
lattice.

3.3 Framework Validation and Experiments
Now we evaluate our implementation of the DLSP framework using two syn-
thetic tasks and benchmark our method against a fully-connected neural network
for completeness. The aim of the first one is to provide justification of our im-
plementation’s correctness, since the lattice convolutional layer should be able to
converge to the global optimum. The second problem explores how the lattice
convolutional layers performs when classifying signals on a permutation lattice, a
common setting in real-world problems.

3.3.1 Sums on a Powerset Lattice

This first task has been engineered such that there exists a closed form solution
to the problem in the lattice domain, hence a lattice convolutional layer with one

15

filter and no activation function nor bias should converge to a loss near zero. This
tasks allows us to confirm that the code implementation of the DLSP is indeed
correct and that is behaves as expected on a problem for which we know it should
be able to reach a global optimum.

Problem definition The aim is to show that the framework is able to solve a
problem for which there exists a perfect solution; i.e there is a filter for which the
mean square error is exactly zero. Consider the powerset of a finite set S of size n:
S = {x1,x2,x3, ...,xn}. Let us denote the powerset of S as 2S. Recall from Section
2.2 that the powerset with the intersection as meet and the union as join is a lattice
[WAP20]. The task is the following: given an input signal s such that:

s{xi} = some number such that
n

∑
i=1

s{xi} = 1,

sA = 0 for any A ∈ 2Ssuch that |A| 6= 1,

The task is to extend the signal by propagating the sums; i.e: output a signal ŝ
such that:

ŝA = ∑
x∈A

s{x} for all A ∈ 2S

Experimental setup A single MeetConv layer is trained without any bias,
one input and one output channel and no activation function. We generate ran-
dom pairs (s, ŝ) and optimize using a Mean Square Error loss. We benchmark our
results against a fully-connected neural network without any bias term nor activa-
tion function. Observe our model only has O(|2S|) trainable parameters whereas
the fully-connected (FC) baseline has O(|2S|2) parameters, this is because in our
model the filter lies in the same space as the signal. We run the experiment for
n = 3, ...,8 and repeat the experiment one hundred times.

Results Figure 1 shows the average loss across all runs, as a function of
the number of training steps. Observe that both models converge eventually to
zero, but the MeetConv converges faster to its global optimum. This can be ex-
plained by the fact that it has orders of magnitude less trainable parameters, hence
this behavior magnified as n grows as shown in Figure 1. Namely for n = 8 the
MeetConv layer has |28| = 256 trainable parameters whereas the fully-connected
baseline has (28)2 = 65,536.

16

(a) (b)

(c) (d)

(e) (f)

Figure 1: Average L1 loss of 100 runs as a function of training steps for n =
3, ...,8. Fully-Connected baseline in blue, Lattice CNN in red.

3.3.2 Ranked data classification on a Permutation Lattice

This task can be viewed as a transition from synthetic to real world problems: we
try to classify signals on the lattice of permutations. Namely, the signals represent
ranked data which are common in real world tasks but we still generate the data
from a known distribution. Observe that because in both problems we are sam-
pling directly from the true distribution we do not need to make the distinction
between training and testing error, as would be standard with problems for which

17

we are sampling from the empirical distribution.

Motivations The permutations of a list of n elements forms a lattice of size
n!. Formally, if we have two permutations a = (a1, ...,an) and b = (b1, ...,bn), we
say that b covers a if and only if there exists a transposition τi that exchanges two
consecutive elements in positions i, i+1 such that ai < ai+1 and

b = a · τi = (a1, ...,ai−1,ai+1,ai,ai+2, ...,an)

This equation allows us to construct the covers graph, which we can then use in
our framework to create a lattice. Hence the hope is that we can gain a structural
advantage by using a lattice CNN to classify ranked data. In this case, the sig-
nal would simply be the number of votes each permutation has received, and the
target would be to recover the reference permutation from the mallows mixture
model by producing a dirac delta on the true permutation, i.e, a one-hot vector
corresponding to the reference permutation.

Problem definition Next we investigate the capability of our framework to
classify strict-order complete list (SOC) ranked data. SOCs define a complete,
transitive and symmetric relation over a group of objects. For example assume we
have three objects A, B and C. We write B,A,C to specify that B is strictly pre-
ferred to A which is strictly preferred to C. Using [MW13] we can generate SOC
ranked data indexed by the lattice of permutations. Namely we generate signals
by sampling votes from an underlying hidden Mallow Mixture Model [Citation
Needed].

Experimental setup The task can be described as the following: m voters
generate a random permutation (i.e they cast their vote) from a set of n candidates
objects sampled from k hidden reference permutations using a Mallows Mixture
Model. The signal input to the network is simply the number of votes that each
permutation has received, and the target is to produce a dirac delta signal on the
hidden source permutations. That is, train on pairs (permutation vote count lattice
signal, source permutations lattice signal). The model is optimized using a Binary
Cross-Entropy loss without any bias nor activation function. For this task, our
model consists of 1 layer of MeetConv and JoinConv. The output of both layers is
summed together. We benchmark our results against a one layer fully-connected
neural network with the same activation function. For this experiment we set
m = 100,k = 1 and n = 3, ...,7.

Results Results are displayed in Figure 2. It shows that the Lattice CNN
clearly beats the fully connected neural network benchmark. This can be ex-

18

plained for two main reasons. First as in the previous task the Lattice CNN
has orders of magnitude less trainable parameters: O(n!) where as the FC has
O(n!2). Because the factorial operator grows exponentially fast, at n = 7 the fully
connected network already has 25 million parameters per layer which becomes
quickly intractable. Second, the Lattice CNN has, by design, a structural advan-
tage over the baseline which further increases the gap between both models. We
found that increasing the depth of both models did not yield any significant im-
provements.

Because the number of voters is fixed (m = 100), the vote count for each node
in the lattice becomes sparse as n increases. Namely, for n = 3 the permutation
lattice contains 6 elements which means there is a high probability that each node
in the graph gets some votes. On the other hand, for n = 7 there are 5,040 possible
permutations for only 100 voters hence the signal is very sparse. This would tend
to explain why the error is higher for smaller n, as there is less noise in the signal
as n grows.

19

(a) (b)

(c) (d)

(e)

Figure 2: Binary Cross-Entropy loss for permutation lattice of n = 3, ...,7 objects.
Fully-Connected baseline in blue, Lattice CNN in red.

20

4 Structured Output Learning using Lattice Convo-
lutional Neural Networks

Having described in detailed our framework and validated its performance on syn-
thetic data, we now want to know how it performs on real world datasets. In the
first subsection, we start by defining structured output learning (SOL) and expose
our motivations for evaluating the DLSP framework in this particular domain.
Next, we explore how lattice CNNs perform on a protein classification task where
the output space is a tree. Finally, we try to leverage the powerset lattice to im-
prove multi-label classification tasks.

4.1 Structured output Learning
Definition In traditional machine learning algorithms, the task can be sum-

marized as follows: we seek to learn a parameterized function fθ such that it maps
our input x ∈ X to our targets y ∈ Rn:

fθ∗ : X → Rn,

θ
∗ = argmin

θ
`(fθ (x), y), for x ∈ X , y ∈ Rn

where ` is the loss function. This can be any kind of task like classification,
regression or density estimation. In contrast, in structured output learning the
outputs y ∈ Y are complex structured objects. This is the case for example in
tasks such as part of speech (POS) tagging [ZLS18] where we seek to produce a
sentence syntax tree or protein function prediction where the output is a path in a
tree.

Task output structures The label space of first experiments consists of a
direct acyclic graph (DAG), hence it is a poset. We are interested in predicting
the functions of a proteins given its amino-acid sequence. Namely, each function
is a node in the DAG, where the root is the most general function and leafs are
the most specific ones. We are interested in predicting the functional subgraph
of a protein, i.e, the path from the root to the most specific functions of a given
protein. Thus in this problem setting, the output structure is a partially ordered
set, and the signal is a binary prediction on each node in the DAG such that the
predicted functions form a connected subgraph of the label space. The root node
is always active.

In the multi-label classification setting, we consider the powerset lattice of all
the classes. The target is a Dirac delta on the node corresponding to the set of
classes that are true. Formally, if we have a multi-label classification problem
with k classes, we view y ∈ R2k

as a signal indexed by the powerset lattice.

21

Motivations In both experiments, we consider structured output spaces where
the outputs are indexed by a lattice (or a poset). Hence we hope that by using a
lattice CNN, we can incorporate enough prior knowledge about the output space
into the model such that it improves our prediction metrics. Indeed, the problems
were specially chosen such that the output space can be modeled as a lattice or a
direct acyclic graph.

In multi-label classification, the main focus is to learn the underlying depen-
dencies between labels, and to take advantage of this during classification. Con-
sider the set of all labels L and its powerset 2L. Recall that the powerset with the
meet as intersection and the join as union is a lattice. Thus we can leverage the
DLSP framework to model all the dependencies between the labels and hope to
learn the one that are meaningful while dropping the ones that are not.

In both experiments we compare our work against established benchmarks in or-
der to validate our approach. Although results show that the improvements against
previous work remains limited, our framework still archives results on par with
other state-of-the-art techniques.

4.2 Protein Function Prediction
In this experiment, we have a sequence of amino acids that describe proteins,
and the goal is to predict all its functions. In the next sub-sections we describe
in depth the problem setting and try to motivate why the DLSP framework is a
relevant tool to solve this problem. Next we talk about related work and introduce
their findings. Finally we present our experimental setup and show our results.

4.2.1 Problem description

In this setting, we already know the structure of the output space and the relation
between the labels. We seek to leverage the structural advantage of the Lattice
CNNs to make some predictions on a DAG. Namely, we have multi-label classifi-
cation task in which we have a known inductive biases over the individual labels,
i.e, if a protein has a given function, then it must also have all the function’s
predecessors of it in the functional ontology tree. This task was previously inves-
tigated in related work where the authors tried to leverage graph neural network
to make some predictions on the ontology [Spa+20], hence this provides a good
benchmark for our lattice signal processing framework.

Gene Ontology The problem of predicting protein function prediction can
be boiled down to the task of predicting a subgraph of a directed acyclic graph
describing the hierarchy of protein functions, called the Gene Ontology (GO)

22

Figure 3: Subgraph of the Molecular Function Gene Ontology. In this figure
"metabolic process" is the root node hence every protein must inherit this property.
Figure taken from [Ash+00]

[Ash+00]. The The Gene Ontology (GO) describes our knowledge of the bio-
logical domain with respect to three aspects: Molecular Function, Cellular Com-
ponent and Biological Process. The structure of ontology can be described in
terms of a graph, where each GO term is a node, and the relationships between
the terms are edges between the nodes (see Figure 3). GO is loosely hierarchical,
with ‘child’ terms being more specialized than their ‘parent’ terms, but unlike a
strict hierarchy, a term may have more than one parent term.

CAFA dataset The protein sequences and functional annotations were pro-
vided by the CAFA3 dataset [NYa19]. It contains 31,243 proteins, the average

23

amino acid sequence length is 431 and the average number of functions per pro-
tein is 10.

Label space structure The aim of this task is to predict the functional sub-
graph of a protein given its amino acid sequence, hence the output of the protein
function prediction problem is a subgraph of a hierarchically-structured graph.
As pointed out in the previous section, the output space is a direct acyclic graph,
and the signal we wish to output is a binary prediction on each node of the DAG,
such there is a path from the root to all the protein’s function. Namely all the
nodes in the protein’s functional subgraph must be reachable from the root, i.e,
the functional subgraph is (weakly) connected. Observe that unlike most graph
representation learning task, the graph is not specified in the input space but only
in the label space: it is a structured output learning problem. Namely, we are given
a multilabel classification task in which we have a known hierarchy between the
labels, i.e, if protein P has function F, then it must also have all the functions that
are a predecessor of F in the ontology graph. In this task we will only focus on
the Molecular Function subgraph of the Gene Ontology which contains 11,113
nodes. The ontology is a direct acyclic graph hence it is a meet semi-lattice and
the root function, named molecular function, is the smallest node in the tree.

4.2.2 Related work

Figure 4: Overview of the model proposed by [Spa+20]. The inputs, as amino-
acid sequences, are passed to the labeller network which produces the latent em-
beddings ~vi for each label i ∈ L. These are then passed to the Tail-GNN which
computes an updated version of the latent embeddings, ~hi. Finally the predic-
tion are made by passing the updated latent embeddings to a linear layer, which
produced yi for each i ∈ L. Figure taken from the authors.

24

Let X denote the input space, and Yi the output space for each label i ∈ L,
where L denotes the label space. In this case, x ∈ X are protein sequences of one-
hot encoded amino acids, and outputs yi ∈Yi are binary labels indicating presence
or absence of individual functions for those proteins.

The authors of [Spa+20] propose a solution in which they subdivide their net-
work in two main sub-components: the labeller network and the Tail-GNN. The
former is tasked to project the inputs, i.e, the sequence of amino acids provided
by the CAFA3 challenge [NYa19], into higher-dimensional embeddings living in
the label space L. Next, the Tail-GNN leverages prior knowledge of the output
space, by using the ontology graph’s adjacency matrix, to predict each protein’s
functional subgraph. Next we dive into more details about both sub-modules of
the architecture proposed by [Spa+20].

Labeller Network We denote by Z = {~z1, ...,~z|L|} the latent space in which
the inputs are projected by the labeller network, called f . Typically, these will be
k-dimensional real-valued vectors. The labeller network consists of a deep dilated
convolutional neural network [Kal+17]. This allows for a efficient way of pro-
cessing amino-acid sequence, without the performance drop induced by recurrent
neural network cells. It outputs latent embeddings of shape L×k for each amino-
acid in the protein sequence, followed by global average pooling and reshaping to
obtain a vector of length k for each label, i.e, each node in the ontology.

Tail-GNN The latent embeddings produced by f are the passed to the Tail-
GNN, noted g. It treats each label i∈L as a node in the ontology graph and~zi as its
corresponding node feature. The graph hierarchy is encoded using an adjacency
matrix A ∈ RL×L such that Ai j = 1 implies that the prediction for label j can be
related with the prediction for label i. The Tail-GNN is closely related to the GCN
model [KW17]. At each step, the latent features~hi are updated in each label by
aggregating neighborhood features across edges:

~h′j = ReLU

(
∑

i∈N j

ci jW~hi

)

where N j is the one-hop neighborhood of label i in the GO, W is a shared weight
matrix parametrising a linear transformation, and ci j is a coefficient of interaction
from node j to node i, for which the authors experiment with several values:

1. sum-pooling X: ci j = 1 for all i, j ∈ L

2. mean-pooling X: ci j =
1
|N j| for all i, j ∈ L

25

3. graph attention: ci j = a(~hi,~h j) for all i, j ∈ L, where a is an attention func-
tion described in [Vel+20]

Finally the authors also to attempt to explicitly account for the label space topol-
ogy by leveraging max-pooling:

~h′j = ReLU
(

max
i∈N j

W~hi

)
The model can be summarized by the following relations:

f : X → (Z1×Z2 · · ·×ZL)

g : R|L|×k×R|L|×|L→ (Y1×Y2 · · ·×YL)
g(f (x),A) = g(Z,A) = Y = (y1, ...,y|L|)

The final layer of the network is a shared linear layer, followed by a logistic sig-
moid activation. It takes the latent label representations produced by Tail-GNN
and predicts a scalar value for each label, indicating the probability of the protein
having the corresponding function. Figure 4 shows the architecture from input to
output.

The entire network is optimized end-to-end using a Binary Cross-Entropy loss.
Obsolete nodes and functions occurring in less than 500 proteins in the original
CAFA3 dataset are discarded, which yields a reduced ontology with 123 nodes
and 145 edges. Proteins whose function subgraph contain only the root node and
those who are longer than 1000 amino acids are dropped. The dataset was ran-
domly split into training/validation/test sets, with a rough proportion of 68:17:15
percent. Table 2 summarizes the results as reported by the authors.

Model Validation F1 Test F1
Labeller network 0.582 ± 0.003 0.584 ± 0.003
Tail-GNN-mean 0.583 ± 0.006 0.586 ± 0.004
Tail-GNN-GAT 0.582 ± 0.004 0.587 ± 0.005
Tail-GNN-max 0.581 ± 0.002 0.585 ± 0.004
Tail-GNN-sum 0.596 ± 0.003 0.600 ± 0.003

Table 2: Values of F1 score for validation and test datasets for the proposed mod-
els, aggregated over five random seeds. Results taken from [Spa+20]

26

4.2.3 Experimental Setup

Similarly to what the author’s setup in [Spa+20], we re-use the labeller network
architecture to produce the latent embeddings Z and pass it’s output to a lattice
convolutional neural network in order to make a prediction in the label space.
We reproduce the author’s experimental setup by switching the Tail-GNN for the
lattice CNN, and we compare performance of the labeller network alone against
a lattice CNN on top of the labeller network in place of the Tail-GNN. We ex-
periment by training the whole architecture end-to-end, both in the spectral and
lattice domain for the lattice CNN. We also vary the number of layers in the lattice
CNN, as well as the number of filters. Finally we evaluate the performance of the
architecture using localized one-hop layers.

We also try to increase the size of the ontology. The authors of [Spa+20]
report a reduced ontology size of 123 edges by filtering the nodes that occur less
than 500 times in the CAFA3 dataset. We try to decrease this limit to 10, thus
increasing the output space to 1,731 nodes. The incentive behind this is to increase
the difficulty of the task for the labeller network when trained alone, and hope
that the lattice CNN it will be able to leverage the bigger ontology size due to its
structural advantage on the output space, and thus improve the test f1 accuracy.
We validate our results using 5 fold cross-validation.

4.2.4 Results

The results are depicted in Table 2. Unfortunately, we find that the little increase
in f1 accuracy reported by [Spa+20] was not able to resist against increased sta-
tistical scrutiny. We find that, when trained on the reduced ontology, the labeller
network alone, the labeller network and the Tail-GNN and the labeller network
with the lattice CNN produce similar f1 test accuracies (Table 3). We suspect
this might be due to the expressiveness of the deep dilated convolutional network
structure. Indeed, this is a very powerful model that is able to learn complex repre-
sentations, such that stacking on top of it a lattice CNN or a GNN only marginally
improves the prior knowledge on the output space structure. Namely, if the la-
beller network successfully projects the input domain (an amino acid sequence)
to a latent representation Z, one can doubt that it will benefit from another net-
work to project Z to L. In order to verify this hypothesis we increase the ontology
size. We expect the task to be harder as the ontology grows, and the lattice CNN
to significantly affect the results in the case where the labeller network would lack
the expressiveness to exploit the increase in size of the output space.

Increased ontology Interestingly, although the results are lower on the aug-
mented ontology size, we find that training on the bigger output space and com-

27

puting the test f1 on the reduced ontology yields a significant increase of 10% of
the evaluation metric. This is true for all three models compared, which would
tend to indicate that the bigger the output space the more information the labeller
network can extract from the ontology. This also suggests that the deep dilated
convolution model is already a very powerful model, and that the use of GNNs
or Lattice CNN to incorporate some prior into the model is not very successful.
Indeed, these results tend to confirm our prior hypothesis that the labeller net-
work is able to maximally exploit the information in the output space, i.e, it is not
a bottleneck in the performance. Otherwise, increasing the ontology size would
produce a lower increase in performance for the labeller network alone than the
lattice CNN on top of the labeller. Since it is not the case, we can suspect that the
deep dilated CNN is already enough to capture all the meaningful information in
the output space, thus adding a GNN or a lattice CNN on top of it is redundant.

Localized filters Observe that for a lattice, an element is irreducible if and
only if it has at most one parent in the covers graph. We extend this definition
to direct acyclic graphs and reuse the definition of k-hop filters from section 3.1.
We find that one-hop filters yield very poor results on the gene ontology DAG.
Our analysis shows that when using a binary cross entropy loss, due to the last
sigmoid activation layer, the gradient fades to zero very rapidly, thus prevents the
model to train for longer than one epoch. Our attempts to mitigate this effect
by removing the binary cross entropy loss and the sigmoid activation layer and
replacing them with a L2 loss seem to slow this phenomenon. However, this solu-
tion does not completely solve the problem. Stacking multiple layers of one-hop
filters increases the depth of the network so much that it prevents the model from
producing results on par with the other evaluated techniques.

Fixed Labeller Network Finally, we try to fix the weights of the labeller
network and fine-tune a lattice CNN on top of the labeller’s predictions. Although
the training seems to hint a promising accuracy, when evaluated on the test set
results suggest that the lattice CNN is overfitting on the labeller network’s em-
beddings, and yields worse results than training the labeller and a lattice CNN
end-to-end.

28

Model Reduced Ontology Full Ontology
Trained on full,

Evaluated on reduced
Labeller network 0.584 ± 0.003 0.502 ± 0.009 0.666 ± 0.002
Tail-GNN-sum 0.600 ± 0.003 0.505 ± 0.007 0.661 ± 0.008
Ours 0.594 ± 0.005 0.503 ± 0.009 0.664 ± 0.009
Fixed labeller network + Ours 0.572 ± 0.009 0.488 ± 0.001 0.635 ± 0.002
Ours + localized filters 0.207 ± 0.004 0.124 ± 0.005 0.249 ± 0.003

Table 3: Test F1 score for our model against the best model from [Spa+20]

4.3 Multi-Label classification
Next we evaluate our framework in the context of multi-label classification. First
we revisit our Mallows mixture model experiment by increasing the number of
reference permutations. This is interesting because it allows to us validate our ex-
perimental setup on multi-label tasks before moving on to real world classification
problems. Second, we try to leverage the powerset lattice to evaluate our proposed
method on the Pascal VOC multi-label classification benchmark [Eve+09].

Assume we have a binary classification task for k labels. The goal of a multi-
label classification task is to output a vector in y ∈ Rk such that 0 ≤ yi ≤ 1 for
i = 1, ...,k the k labels, where yi denotes the probability of the ith label to be true.
The specificity of this task is that more than one label can be true for each data
point.

Contrary the the previous task, we do not have any prior on the relationships
between the labels. In this context, we construct the powerset of all the combi-
nations of labels, noted 2L, with the intersection as meet and the union as join.
The idea is to add a lattice CNN on top of our classification model just before the
prediction. Assume we have a multi-label model that outputs a vector y∈Rk, then
we construct our method as follows. First we add a linear layer to project y into
R2k

, then we pass the output of the linear layer to sequence of powerset convolu-
tional layers. We then apply a softmax activation function to the last layer. Our
prediction is the set of labels corresponding to the maximal element in the output
vector.

Notice this methods is limited by the number of labels we can support, since
we need first to project the output into R2k

and then construct the powerset con-
volutional lattice. Since these quantities grow exponentially with respect to k, we
are limited to small values (at most 15 labels).

29

4.3.1 Revisiting the Mallows Mixture Model experiment

Motivations Recall the experimental setup of section 3.3.2, where we gen-
erate ranked data from a reference permutation. The task was to predict the refer-
ence permutation by observing the votes sampled from a Mallows mixture model.
We used k = 1 for the experimental setup. Now we evaluate how the lattice CNN
performs as we increase the number of reference permutations. The objective of
this experiment is similar to the ones of section 3, namely we wish to observe how
our framework behaves in the context of a synthetic task, before we benchmark it
against real-world experiments.

Experimental setup The setup is straightforward: we re-run our permuta-
tion lattice CNN from section 3.3.2 and increase the number of reference permu-
tations. We compare this model against the same model, on which we stack a
linear layer to project the outputs into R2k

and then pass it to a one layer powerset
lattice CNN. The networks are trained to minimize the binary cross entropy loss.
We evaluate both models as a function of k, the number of reference permutations.

Results As Figure 5 shows, both models produce exactly the same output no
matter the number of reference permutations. This can probably be explained by
the fact that a single lattice CNN layer can already solve the task to a near zero
binary cross-entropy loss. It seems that the powerset lattice CNN layer learns to
copy the prediction of the permutation CNN since it is already able to solve the
task by itself

4.3.2 Pascal VOC

Problem description The Pascal VOC [Eve+09] is a visual object chal-
lenge. The dataset contains 8,776 images in which 20,739 objects appear, grouped
into 20 classes. Thus it is a multi-label classification problem. Models are eval-
uated using the maximum a posteriori metric. Since we can only compute the
powerset lattice for a small number of elements, we chose this challenge because
it has a limited number of classes, unlike tasks like MS-COCO [Lin+15] which
contains 80 classes.

Related work The problem of predicting multiple labels per image can be
approached by multiple angles. Some success was reported by exploiting label
correlation via GNNs which represent the label relationships [Che+19b], or word
embeddings based on knowledge priors [Che+19a]. Other authors have explored
modeling image parts and attentional regions [You+20] as well as using recurrent

30

(a) (b)

(c)

Figure 5: Binary Cross-Entropy loss as a function of the number of epochs on the
permutation lattice of size n = 3. We vary the number of reference permutation to
evaluate the capabilities of the powerset lattice on multi-label tasks. Both curves
are exactly the same thus only one purple curve is seen.

neural networks [Nam+17]. Finally [Ben+20] propose using a focal loss to handle
class imbalance in multi-label problems.

Experimental setup We use the pretrained model from [Ben+20] on Pascal-
VOC 2007, and apply the same procedure as the multi-label permutation classi-
fication task above. Namely, we append to the pretrained model’s output layer a
linear module to project the outputs to R2k

and pass it to a powerset lattice CNN.
Since this procedure is computationally viable for small k only, we sample the
datapoints from ten random classes. We fine tune end-to-end the newly obtained
architecture. Since we want our results to be as statistically significant as possible,
we repeat this procedure one hundred times by sampling ten random classes from
the Pascal VOC dataset and re-run the training procedure. We report the mean
average precision (mAP) across all runs.

31

Results Results are shown in Table 4. Stacking a powerset lattice on top of
a pretrain model yields a loss of accuracy. This is probably due to the fact that
TResNet-L is a very deep model. Recall we need to add a fully connected layer
between the powerset CNN and the reset of the architecture. This is a full rank
matrix of shape R10×1024. This is probable that this matrix acts as a bottleneck in
the model hence it slightly degrades the performance of the original model.

Model MAP
TResNet-L 95.8
Ours 93.4

Table 4: Test MAP for our model vs TResNet-L from [Ben+20] pretrained on
MS-COCO

5 Conclusion
In this thesis we introduced the discrete lattice signal processing framework from
[PSW20] that stems from the algebraic signal processing theory [PM08]. DLSP
leverages the meet and join operations to define a shift, and in so doing, ASP
provides the tools to construct a full signal processing framework on lattices and
partially ordered sets.

Framework implementation Using the DLSP theory, we built a fully func-
tional lattice processing implementation based on the pytorch framework. The
proposed lattice CNNs behaves like any other layer in the pytorch library, hence
it can be easily mixed with other layers to produce a customized model. We intro-
duced an API to construct and interact with lattices using the cover graph, which
allows for the seamless creation of meet and join convolutional layers. The for-
ward pass was implemented both in the lattice and spectral domain to accommo-
date for every possible usage. We also introduced some optimizations that helped
increase the framework’s overall performance. Finally, we observed that the pro-
posed implementation could compute the convolution between a signal and a filter
without the need of the shift operator (meet and join) , hence we were able to re-
lax the lattice condition such that the framework can also process partially ordered
sets, i.e, directed acyclic graphs, which are ubiquitous in real-world datasets.

Synthetic tasks The lattice CNN being implemented, we proceeded to eval-
uate the correctness of our code by running some synthetic experiments. The first

32

one showed that our implementation indeed converged to the global minimum and
that the lattice CNN was capable of solving tasks for which we could compute by
hand closed form solutions in the lattice domain. Next, the second synthetic task
allowed us to bridge the gap between synthetic and real-world tasks. Indeed,
classifying permutations is a common problem in real-world experiments and we
successfully showed that our implementation was able to leverage a signal on the
permutation lattice to make some predictions.

Real-world tasks Our experiments on real-world datasets showed that there
still remains some work to be done in order for the lattice signal processing frame-
work to beat conventional deep learning methods. Even though our implemen-
tation was able to perform similarly to current state-of-the-art benchmarks, we
have not been able to demonstrate a significant advantage from using the lattice
CNN. This is partly due to the fact that current state-of-the-art models have been
explored by deep learning academics for more than a decade, hence performing
better than convolutional neural networks remains a very difficult task.

Limitations Finally, contrary to DTSP, our framework does not provide any
way to extend sublattices, hence the filter and the signal must lie in the same
space. Thus it is not possible to apply transformations such as pooling using our
proposed implementation. This also yields the constraint that the input domain
must be fixed. It was a surprisingly difficult task to find and conceive experiments
such that the use of the lattice CNN was justified and the input domain was fixed.
Also, due to some implementation requirements, we were not able to process
lattices with more than 218 elements. Furthermore, for the multi-label tasks, the
use of the powerset lattice limited the number of classes to n = 10 due to the
obvious exponential complexity of the powerset lattice.

Acknowledgements
I would like to thank Chris Wendler and Markus Püschel, for taking the time to an-
swer my questions as well as their very insightful feedback and ideas. Their help
was crucial in the process of building, improving and debugging this framework.
I thank also Stefan Spalevic who provided the code of the labeller network used
in Section 3.2. This was very helpful to ensure that the all experiments were ran
as fairly as possible against the all benchmarks. It also allowed for precious time
saving. Finally I thank ETH Zürich and the Advanced Computing Laboratory for
providing me with this opportunity to do my master thesis in their laboratory, as
well as a state-of-the-art computational infrastructure that allowed me to run my
experiments in the best conditions.

33

References
[SF99] Richard P. Stanley and Sergey Fomin. Enumerative Combinatorics.

Cambridge University Press, Jan. 1999. DOI: 10.1017/cbo9780511609589.
URL: https://doi.org/10.1017/cbo9780511609589.

[Ash+00] Michael Ashburner et al. “Gene Ontology: tool for the unification of
biology”. In: Nature Genetics 25.1 (May 2000), pp. 25–29.

[Row00] S. T. Roweis. “Nonlinear Dimensionality Reduction by Locally Lin-
ear Embedding”. In: Science 290.5500 (Dec. 2000), pp. 2323–2326.
DOI: 10.1126/science.290.5500.2323. URL: https://doi.
org/10.1126/science.290.5500.2323.

[HCL06] R. Hadsell, S. Chopra, and Y. LeCun. “Dimensionality Reduction by
Learning an Invariant Mapping”. In: 2006 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR’06).
Vol. 2. 2006, pp. 1735–1742. DOI: 10.1109/CVPR.2006.100.

[PM06] Markus Püschel and José M. F. Moura. “Algebraic Signal Process-
ing Theory”. In: CoRR abs/cs/0612077 (2006). arXiv: cs/0612077.
URL: http://arxiv.org/abs/cs/0612077.

[MH08] Laurens van der Maaten and Geoffrey Hinton. “Visualizing Data us-
ing t-SNE”. In: Journal of Machine Learning Research 9.86 (2008),
pp. 2579–2605. URL: http://jmlr.org/papers/v9/vandermaaten08a.
html.

[PM08] M. Puschel and J. M. F. Moura. “Algebraic Signal Processing The-
ory: Foundation and 1-D Time”. In: IEEE Transactions on Signal
Processing 56.8 (2008), pp. 3572–3585. DOI: 10.1109/TSP.2008.
925261.

[Eve+09] Mark Everingham et al. “The Pascal Visual Object Classes (VOC)
Challenge”. In: International Journal of Computer Vision 88.2 (Sept.
2009), pp. 303–338. DOI: 10.1007/s11263-009-0275-4. URL:
https://doi.org/10.1007/s11263-009-0275-4.

[Sca+09] F. Scarselli et al. “The Graph Neural Network Model”. In: IEEE
Transactions on Neural Networks 20.1 (2009), pp. 61–80. DOI: 10.
1109/TNN.2008.2005605.

[MW13] Nicholas Mattei and Toby Walsh. “PrefLib: A Library of Prefer-
ence Data HTTP://PREFLIB.ORG”. In: Proceedings of the 3rd Inter-
national Conference on Algorithmic Decision Theory (ADT 2013).
Lecture Notes in Artificial Intelligence. Springer, 2013.

34

https://doi.org/10.1017/cbo9780511609589
https://doi.org/10.1017/cbo9780511609589
https://doi.org/10.1126/science.290.5500.2323
https://doi.org/10.1126/science.290.5500.2323
https://doi.org/10.1126/science.290.5500.2323
https://doi.org/10.1109/CVPR.2006.100
https://arxiv.org/abs/cs/0612077
http://arxiv.org/abs/cs/0612077
http://jmlr.org/papers/v9/vandermaaten08a.html
http://jmlr.org/papers/v9/vandermaaten08a.html
https://doi.org/10.1109/TSP.2008.925261
https://doi.org/10.1109/TSP.2008.925261
https://doi.org/10.1007/s11263-009-0275-4
https://doi.org/10.1007/s11263-009-0275-4
https://doi.org/10.1109/TNN.2008.2005605
https://doi.org/10.1109/TNN.2008.2005605

[SM13] Aliaksei Sandryhaila and José M. F. Moura. “Discrete Signal Pro-
cessing on Graphs”. In: IEEE Transactions on Signal Processing
61.7 (Apr. 2013), pp. 1644–1656. ISSN: 1941-0476. DOI: 10.1109/
tsp.2013.2238935. URL: http://dx.doi.org/10.1109/TSP.
2013.2238935.

[Shu+13] D. I. Shuman et al. “The emerging field of signal processing on
graphs: Extending high-dimensional data analysis to networks and
other irregular domains”. In: IEEE Signal Processing Magazine 30.3
(May 2013), pp. 83–98. ISSN: 1053-5888. DOI: 10 . 1109 / msp .
2012.2235192. URL: http://dx.doi.org/10.1109/MSP.2012.
2235192.

[Bru+14] Joan Bruna et al. Spectral Networks and Locally Connected Net-
works on Graphs. 2014. arXiv: 1312.6203 [cs.LG].

[Lin+15] Tsung-Yi Lin et al. Microsoft COCO: Common Objects in Context.
2015. arXiv: 1405.0312 [cs.CV].

[Bjö+16] Andreas Björklund et al. “Fast Zeta Transforms for Lattices with
Few Irreducibles”. In: ACM Transactions on Algorithms 12.1 (Feb.
2016), pp. 1–19. DOI: 10.1145/2629429. URL: https://doi.
org/10.1145/2629429.

[Bro+17] Michael M. Bronstein et al. “Geometric Deep Learning: Going be-
yond Euclidean data”. In: IEEE Signal Processing Magazine 34.4
(July 2017), pp. 18–42. ISSN: 1558-0792. DOI: 10 . 1109 / msp .
2017.2693418. URL: http://dx.doi.org/10.1109/MSP.
2017.2693418.

[Kal+17] Nal Kalchbrenner et al. Neural Machine Translation in Linear Time.
2017. arXiv: 1610.10099 [cs.CL].

[KW17] Thomas N. Kipf and Max Welling. Semi-Supervised Classification
with Graph Convolutional Networks. 2017. arXiv: 1609.02907 [cs.LG].

[Nam+17] Jinseok Nam et al. “Maximizing Subset Accuracy with Recurrent
Neural Networks in Multi-label Classification”. In: Advances in Neu-
ral Information Processing Systems. Ed. by I. Guyon et al. Vol. 30.
Curran Associates, Inc., 2017. URL: https://proceedings.neurips.
cc/paper/2017/file/2eb5657d37f474e4c4cf01e4882b8962-
Paper.pdf.

[Dai+18] Hanjun Dai et al. Learning Combinatorial Optimization Algorithms
over Graphs. 2018. arXiv: 1704.01665 [cs.LG].

[San+18] Alvaro Sanchez-Gonzalez et al. Graph networks as learnable physics
engines for inference and control. 2018. arXiv: 1806.01242 [cs.LG].

35

https://doi.org/10.1109/tsp.2013.2238935
https://doi.org/10.1109/tsp.2013.2238935
http://dx.doi.org/10.1109/TSP.2013.2238935
http://dx.doi.org/10.1109/TSP.2013.2238935
https://doi.org/10.1109/msp.2012.2235192
https://doi.org/10.1109/msp.2012.2235192
http://dx.doi.org/10.1109/MSP.2012.2235192
http://dx.doi.org/10.1109/MSP.2012.2235192
https://arxiv.org/abs/1312.6203
https://arxiv.org/abs/1405.0312
https://doi.org/10.1145/2629429
https://doi.org/10.1145/2629429
https://doi.org/10.1145/2629429
https://doi.org/10.1109/msp.2017.2693418
https://doi.org/10.1109/msp.2017.2693418
http://dx.doi.org/10.1109/MSP.2017.2693418
http://dx.doi.org/10.1109/MSP.2017.2693418
https://arxiv.org/abs/1610.10099
https://arxiv.org/abs/1609.02907
https://proceedings.neurips.cc/paper/2017/file/2eb5657d37f474e4c4cf01e4882b8962-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/2eb5657d37f474e4c4cf01e4882b8962-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/2eb5657d37f474e4c4cf01e4882b8962-Paper.pdf
https://arxiv.org/abs/1704.01665
https://arxiv.org/abs/1806.01242

[SG18] Daniel G. A. Smith and Johnnie Gray. “opt_einsum - A Python
package for optimizing contraction order for einsum-like expres-
sions”. In: Journal of Open Source Software 3.26 (June 2018), p. 753.
DOI: 10 . 21105 / joss . 00753. URL: https : / / doi . org / 10 .
21105/joss.00753.

[ZLS18] Yue Zhang, Qi Liu, and Linfeng Song. Sentence-State LSTM for Text
Representation. 2018. arXiv: 1805.02474 [cs.CL].

[Che+19a] Zhao-Min Chen et al. Multi-Label Image Recognition with Graph
Convolutional Networks. 2019. arXiv: 1904.03582 [cs.CV].

[Che+19b] Zhao-Min Chen et al. “Multi-Label Image Recognition with Joint
Class-Aware Map Disentangling and Label Correlation Embedding”.
In: 2019 IEEE International Conference on Multimedia and Expo
(ICME). IEEE, July 2019. DOI: 10.1109/icme.2019.00113. URL:
https://doi.org/10.1109/icme.2019.00113.

[NYa19] Zhou N, Jiang Y, and Bergquist T.R et al. “The CAFA challenge
reports improved protein function prediction and new functional an-
notations for hundreds of genes through experimental screens”. In:
Genome Biology (2019). URL: https : / / doi . org / 10 . 1186 /
s13059-019-1835-8.

[Pas+19] Adam Paszke et al. PyTorch: An Imperative Style, High-Performance
Deep Learning Library. 2019. arXiv: 1912.01703 [cs.LG].

[Zho+19] Jie Zhou et al. Graph Neural Networks: A Review of Methods and
Applications. 2019. arXiv: 1812.08434 [cs.LG].

[Ben+20] Emanuel Ben-Baruch et al. Asymmetric Loss For Multi-Label Clas-
sification. 2020. arXiv: 2009.14119 [cs.CV].

[PSW20] Markus Püschel, Bastian Seifert, and Chris Wendler. Discrete Sig-
nal Processing on Meet/Join Lattices. 2020. arXiv: 2012 . 04358
[cs.IT].

[Spa+20] Stefan Spalević et al. 2. 2020. arXiv: 2007.12804 [cs.LG].

[Vas+20] Shikhar Vashishth et al. Composition-based Multi-Relational Graph
Convolutional Networks. 2020. arXiv: 1911.03082 [cs.LG].

[Vel+20] Petar Veličković et al. Neural Execution of Graph Algorithms. 2020.
arXiv: 1910.10593 [stat.ML].

[WAP20] Chris Wendler, Dan Alistarh, and Markus Püschel. Powerset Convo-
lutional Neural Networks. 2020. arXiv: 1909.02253 [cs.LG].

36

https://doi.org/10.21105/joss.00753
https://doi.org/10.21105/joss.00753
https://doi.org/10.21105/joss.00753
https://arxiv.org/abs/1805.02474
https://arxiv.org/abs/1904.03582
https://doi.org/10.1109/icme.2019.00113
https://doi.org/10.1109/icme.2019.00113
https://doi.org/10.1186/s13059-019-1835-8
https://doi.org/10.1186/s13059-019-1835-8
https://arxiv.org/abs/1912.01703
https://arxiv.org/abs/1812.08434
https://arxiv.org/abs/2009.14119
https://arxiv.org/abs/2012.04358
https://arxiv.org/abs/2012.04358
https://arxiv.org/abs/2007.12804
https://arxiv.org/abs/1911.03082
https://arxiv.org/abs/1910.10593
https://arxiv.org/abs/1909.02253

[You+20] Renchun You et al. Cross-Modality Attention with Semantic Graph
Embedding for Multi-Label Classification. 2020. arXiv: 1912.07872
[cs.CV].

37

https://arxiv.org/abs/1912.07872
https://arxiv.org/abs/1912.07872

38

	Introduction
	Background
	Geometric Deep Learning
	Case Study: Deep Learning on Graphs
	Lattice Signal Processing

	Lattice Convolutional Neural Networks
	Definitions
	Implementation
	Framework Validation and Experiments
	Sums on a Powerset Lattice
	Ranked data classification on a Permutation Lattice

	Structured Output Learning using Lattice Convolutional Neural Networks
	Structured output Learning
	Protein Function Prediction
	Problem description
	Related work
	Experimental Setup
	Results

	Multi-Label classification
	Revisiting the Mallows Mixture Model experiment
	Pascal VOC

	Conclusion

