
Jordan Chevalley Decomposition
Implementation and Numerical Analysis

Bachelor Thesis

Felix Sarnthein-Lotichius

Tuesday 7th April, 2020

Advisors: Prof. Dr. Markus Püschel and Chris Wendler

Department of Computer Science, ETH Zürich

Abstract

Introduction: Matrix decomposition is of great importance in the cal-
culation of matrix functions. Simple solutions exist for matrices with
an eigenvalue decomposition, but non-diagonalizable matrices pose
a problem. In this case the function of a matrix is only defined with
respect to its Jordan normal form. I here aim to provide a practical
approach towards the Jordan-Chevalley decomposition.

Approach: First, I reformulated two basic algorithms and intuitive cor-
rectness proofs that show how the algorithms act on the input matrices.
I observed that it might be possible to compute the Jordan-Chevalley
decomposition exactly for integer matrices in polynomial-time. At the
heart of this project, I programmed a Python extension. It provides
sub-routines to compute the Jordan-Chevalley decomposition of integer
matrices. I then evaluated my implementation on different classes of
matrices and analyzed the numerical behavior of the decomposition.

Results: The Chevalley iteration on matrices does not require the computa-
tion of complicated intermediate results and is therefore significantly
faster than the Chevalley iteration on polynomials. The asymptotic runtime
complexity of both algorithms depends on the size of intermediate
results and appears to be polynomial. In practical terms, we can com-
pute the diagonalizable matrix D more efficiently than the Chevalley
polynomial.

Conclusions: I have shown both theoretically and empirically that it
is possible to compute the Jordan-Chevalley decomposition of integer
matrices without symbolic computation. One can simplify the Jordan
structure of a matrix without knowing the structure itself.

Significance: This can be used to compute the eigenvalues and general-
ized eigenvectors of a defective integer matrix. As a possible application,
this is useful to compute a subclass of diagonalizable filters in Graph
Signal Processing.

i

Contents

1 Introduction 1

2 Background and Notation 3

3 The Problem 7

4 Algorithms 11
4.1 Hermite interpolation . 11
4.2 Chevalley iteration . 12

5 Implementation 17
5.1 Computing the characteristic polynomial 17
5.2 Computing the polynomial gcd 18
5.3 Computing the modulo inverse 18
5.4 How to evaluate polynomials 19
5.5 Computing the Chevalley iteration 19

6 Evaluation 21
6.1 Implementation of the characteristic polynomial 21
6.2 Constructed Jordan matrices 23
6.3 Bernoulli matrices . 25
6.4 Kronecker graphs . 28

7 Discussion 31

8 Conclusions 33

9 Acknowledgments 35

Bibliography 39

iii

Chapter 1

Introduction

The computation of matrix functions is a well-known mathematical problem
with various applications in science and engineering. Specifically, matrix
decomposition is of great importance in the calculation of matrix functions.
Simple solutions exist for matrices with an eigenvalue decomposition, but
non-diagonalizable matrices pose a problem. In this case the function of
a matrix is only defined with respect to its Jordan normal form. It is well
known that the problem of computing the Jordan structure of a matrix is
ill-conditioned and thus not computable in practical applications [16] [1].

Graph signal processing (GSP) theory generalizes concepts of discrete signal
processing like filters and Fourier transforms to signals on data indexed by
graphs. Matrix polynomials play an important role in the GSP framework
described in [25]. A filtered signal at a node v is a weighted sum of the
signals at its predecessors. The coefficient hi is applied to all signals at
nodes that precede v by i edges. The matrix representation H of a filter h is
therefore defined as the matrix polynomial h(A), where A is the adjacency
matrix of the graph. The Fourier transform of h is defined via the eigenvalue
decomposition, respectively the Jordan normal form of H [12].

In [20], it was recently proposed to approximate the adjacency matrix A by a
diagonalizable matrix D, obtained via the Jordan-Chevalley decomposition.
Matrix functions of D and A are closely related, since D has the same
eigenvalues and (generalized) eigenvectors as A, but without the Jordan
structure. An effective computation of the Jordan-Chevalley is thus desirable.

Is it possible to compute the Jordan-Chevalley decomposition without sym-
bolic computation? This thesis discusses methods to compute the Jordan-
Chevalley decomposition and some numerical properties of the diagonaliz-
able part D. Our focus lies on directed graph adjacency matrices as a practical
application. The existence of such a method would allow us to simplify the
Jordan structure of a matrix without knowing the structure itself.

1

1. Introduction

Related work

In [20], the Jordan-Chevalley decomposition is calculated using symbolic
computation. This works well but is not scalable to large matrices.

In the french literature the Jordan-Chevalley decomposition is widely known
as ”Dunford decomposition”. Doctoral examinations seem to be particularly
a motivating for algorithmic approaches towards the decomposition [11] [10].
A comprehensive introduction to the topic is provided by [24]. The notes by
Burnol derive a plethora of algorithms [3] - [7]. In general, these are rather
theoretic approaches and without practical considerations.

Our contribution

We aim to provide a more practical approach towards the Jordan-Chevalley
decomposition. First, we reformulated two basic algorithms and intuitive
correctness proofs that show how the algorithms act on the input matrices.
Then, we started an attempt to modify the algorithm from [20] to work
without symbolic computation. This fails because the algorithm requires
information about the Jordan structure. We observed that it might be possible
to compute the Jordan-Chevalley decomposition exactly for integer matrices
in polynomial-time. The implementation of the corresponding algorithm
requires variable size numbers. The runtime is thus dependent on the size
of intermediate results, which could grow exponentially. We evaluated our
implementation on different classes of matrices and analyzed the numerical
behavior of the decomposition. The results suggest that there might be ways
to achieve a Jordan-Chevalley decomposition without exponential growth of
intermediate results.

At the heart of this project I programmed a Python extension. It provides sub-
routines to compute the Jordan-Chevalley decomposition of integer matrices.
The implementation consists of a C++ back-end and an front-end written in
Cython. The back-end relies heavily on the linear algebra library Eigen [17]
for C++. Eigen is a templated header-only library and most of its complexity
is abstracted away at compile time. The Boost library is used for variable
precision computations. The back-end provides subroutines for polynomial
manipulations, as well as a selection of more advanced algorithms that allow
computing the Jordan-Chevalley decomposition.

2

Chapter 2

Background and Notation

The Jordan structure of a matrix reveals many properties of the underlying
linear transformation. Since these concepts are used throughout the thesis,
we will recall the most important definitions. We assume prior knowledge of
basic linear algebra and use the following notation:

Symbol Meaning
n the size of a square matrix
A an n× n square matrix

m the number of distinct eigenvalues of a matrix A
λi the ith distinct eigenvalue of a matrix A
ker(λi I − A) the eigenspace λi spanned by the eigenvectors vj
χA(x) the characteristic polynomial of a matrix A
αi, γi the algebraic and geometric multiplicity of λi
VΛV−1 the eigenvalue decomposition of a diagonalizable matrix A

ker(λi I − A)k the generalized eigenspace of λi of rank k
`(λi, vj) the length of the Jordan chain of λi starting at eigenvector vj
`i the Jordan index of λi := length of the longest Jordan chain of λi
` the Jordan index of A := length of the longest Jordan chain of A

We will now apply these concepts to a special example matrix, a Jordan
block.

Definition 2.1 (Jordan block) A Jordan block of size ` ≥ 1 and eigenvalue λ ∈ C

is the square matrix

Jλ,` =


λ 1

.
. . . 1

λ

 ∈ C`×`.

3

2. Background and Notation

Note that the characteristic polynomial χJλ,`(x) of a Jordan block is given
by (x− λ)`. There is the only one eigenvalue λ with algebraic multiplicity
α = `. The eigenspace of λ is given by ker(λI − Jλ,`) = {e0} and therefore
λ has geometric multiplicity γ = 1. Since γ < α, we know that Jλ,` is not
diagonalizable.

What about the generalized eigenvectors? By solving (λi I − A)kv = 0 itera-
tively for k = 1, . . . we get a sequence of generalized eigenvectors (e0, e1, . . .).
This is the Jordan chain of λ starting at e0, its length is `(λ, e0) = `.

Using the generalized eigenvectors as a change of basis matrix allows us to
generalize the concept of the eigenvalue decomposition.

Theorem 2.2 (Jordan Decomposition) A matrix A ∈ Cn×n can be expressed as

A = V JV−1,

where V ∈ Cn×n is the Jordan basis of A and J ∈ Cn×n is its Jordan normal form.
The decomposition is unique up to the ordering of the Jordan blocks.

The Jordan basis V is a change of basis matrix. Its column vectors are the
generalized eigenvectors, arranged according to the Jordan chains of A.

The Jordan matrix J is a block diagonal matrix. Its blocks are Jordan blocks
Jλi ,` each corresponding to a Jordan chain of A.

Since a Jordan block is a banded matrix, we can also view the Jordan normal
form as a banded matrix, i.e.

J =



.
λi 1

.
. . . 1

λi 0
.

. . .


∈ Cn×n.

In particular, we observe that

1. the diagonal of J contains the eigenvalues λi of A, repeated according
to their algebraic multiplicities αi,

2. the superdiagonal of J consits of sequences of ones separated by zeros,

3. a sequence of length `− 1 corresponds to a Jordan chain of length `,

4. there are multiple sequences for every eigenvalue λi, the exact number
is determined by its geometric multiplicity γi.

4

Now, lets examine the Jordan decomposition of to two special classes of
matrices.

Example 2.3 Let D be a diagonalizable matrix. The Jordan decomposition of D is
its eigenvalue decomposition, i.e.

D = V JV−1 = VΛV−1

Example 2.4 Jordan normal form of a nilpotent matrix N is superdiagonal since
it has only one eigenvalue λ = 0. The nilpotency index of N is given by its Jordan
index, i.e.

N` = 0.

The next example shows that the Jordan decomposition is ill-conditioned and
therefore only computable using symbolic computation.

Example 2.5 Consider the matrix

Aε =

[
1 ε
0 1

]
⇒ A0 =

[
1 0
0 1

]
, Aε>0 = V

[
1 1
0 1

]
V−1.

We observe that for a small change in the input matrix Aε, the Jordan structure
changes completely.

Matrix polynomials

The Jordan decomposition allows us to uncover how a polynomial acts on a
square matrix. We observe that there are polynomials with p(A) = 0.

Lemma 2.6 Let p(x) be a polynomial and A be an n × n matrix with Jordan
decomposition A = V JV−1. Then p(A) = Vp(J)V−1, where

p(J) =



.

p(λi) p′(λi) · · · p(`i−1)(λi)
(`i−1)!

.
...

. . . p′(λi)
p(λi) 0

.
. . .


∈ Cn×n.

Theorem 2.7 (Cayley-Hamilton) Let A be a square matrix with characteristic
polynomial χA(x) = Π(x− λi)

αi . Evaluating χA(x) on the matrix A yields the
zero matrix, i.e.

χA(A) = 0.

5

2. Background and Notation

Proof The characteristic polynomial χA(x) = Π(x− λi)
αi has multiple roots

of multiplicity αi ≥ `i at every eigenvalue λi and thus p(J) = 0. �

Definition 2.8 (Annihilating polynomials) A polynomial p(x) annihilates A
if p(A) = 0. In particular all polynomial multiples of χA(x) annihilate A.

Definition 2.9 (Minimal polynomial) The minimal polynomial µA(x) of a ma-
trix A is the non-trivial polynomial of lowest degree that annihilates A. It is given
by

µA(x) = Π(x− λi)
`i ,

where `i is the Jordan index of λi.

Polynomial arithmetic

Recall that the polynomial division is defined as

p(x) = q(x) · d(x) + r(x),

with dividend p(x), quotient q(x), divisor d(x) and remainder r(x). There is
a nice connection between polynomial division and polynomial evaluation.

Theorem 2.10 (Taylor for polynomials) Consider a polynomial p(x) and its
Taylor approximation Tα0 p(x; x0) at node x0 of order α0, i.e.

Tα0 p(x; x0) = p(x0) + p′(x0)(x− x0) + · · ·+ p(α0)(x0)
(x− x0)α0

α0!
.

Tα0 p(x; x0) is given by p(x) mod (x− x0)α0+1.

Proof In the appendix. �

Theorem 2.11 (Polynomial remainder) The value of a polynomial p(x) at x0 is
given by

p(x0) = p(x) mod (x− x0).

Proof This is a direct consequence of the Taylor theorem for polynomials.
Let r(x) = p(x) mod (x − x0), then p(x0) = q(x)(x − x0) + r(x0) = r(x0).
Since (x− x0) is of degree 1, r(x) must be constant and equal to p(x0). �

Lemma 2.12 Let p(x) and q(x) be a polynomials such that q(x) anihilates a matrix
A and let r(x) = p(x) mod q(x), then we have

p(A) = r(A).

Proof This is a direct consequence of the Taylor theorem for polynomials,
p(A) = q(A)d(A) + r(A) = r(A). �

6

Chapter 3

The Problem

We consider an input matrix A ∈ Cn×n with

1. m eigenvalues λ0, . . . , λm−1,

2. characteristic polynomial χA(x) = Πm−1
i=0 (x− λi)

αi ,

3. Jordan decomposition A = V JV−1.

The goal is to compute the Jordan-Chevalley decomposition of A.

Theorem 3.1 (Jordan-Chevalley decomposition) A matrix A ∈ Cn×n can be
uniquely decomposed into the sum of a diagonalizable and a nilpotent matrix

A = D + N.

The matrices D ∈ Cn×n and N ∈ Cn×n satisfy the following properties:

1. D is diagonalizable and N nilpotent,

2. D and N commute, i.e. DN = ND,

3. D and N are polynomials in A, i.e. ∃p(x) D = p(A) and N = A− p(A).

Proof The Jordan normal form of A can be decomposed into the sum of a
diagonal and a nilpotent part

J =



. . .
λi

. . .
. . .

λi
. . .

. . .


︸ ︷︷ ︸

Λ

+



. . .
1

. . .
1

0
. . .


.

︸ ︷︷ ︸
Ñ

7

3. The Problem

Now, we construct the diagonal matrix D = VΛV−1 and the nilpotent matrix
N = VÑV−1, which yields

A = V(Λ + Ñ)V−1 = D + N.

Later, we will show that D and N are polynomials in A Commutivity follows
from the commuting property of polynomials:

DN = p(A)q(A) = (p · q)(A) = (q · p)(A) = q(A)p(A) = ND. �

It is not feasible to compute the Jordan-Chevalley decomposition via the
Jordan decomposition since the problem of finding the latter is ill-conditioned
(see example 2.5). However, it might still be possible via computing the
Chevalley polynomial.

Definition 3.2 (Chevalley polynomial) The Chevalley polynomial chev(x) real-
izes the Jordan-Chevalley decomposition

chev(A) = D.

Computing the Jordan-Chevalley decomposition reduces to an either implicit
or explicit computation of the Chevalley polynomial. We characterize the
Chevalley polynomial as follows [20].

Lemma 3.3 For every eigenvalue λi of A, the Chevalley polynomial has a fixpoint
at λi and roots at its derivatives. The Chevalley polynomial is given by the solution
of the Hermite interpolation problem: for all eigenvalues λi

chev(λi) = λi

chev′(λi) = 0
...

chev(`i−1)(λi) = 0.

Proof Using lemma 2.6 and the diagonalizability criterion, we get

chev(A) = V



.

chev(λi) chev′(λi) · · · chev(`i−1)(λi)
(`i−1)!

.
...

. . . chev′(λi)
chev(λi) 0

.
. . .


︸ ︷︷ ︸

Λ

V−1 = D

�

8

Now, we reformulate the problem as a system of congruences of polynomials,
using the polynomial remainder theorem.

Lemma 3.4 The Chevalley polynomial of a matrix A is given by the unique solution
of the Chinese remainder problem

chev(x0) ≡ λ0 (mod (x− λ0)
`0)

...

chev(xm−1) ≡ λm−1 (mod (x− λm−1)
`m−1),

where λi are a constant polynomials and (x− λi)
`i are the factors of any annihilating

polynomial of A.

Proof Since we have dk

dxk λi = 0 for all k > 0, we can apply theorem 2.10 and
observe that for every eigenvalue λi of A, the Chevalley polynomial has a
fixpoint at λi and roots at its derivatives. Now, we apply the argument from
the proof of lemma 3.3. �

In this thesis we derive several algorithms to compute the Jordan-Chevalley
decomposition, review an implementation and examine its numerical behav-
ior.

9

Chapter 4

Algorithms

The original proof of theorem 3.1, provided by Claude Chevalley in [8],
shows that a modified Newton iteration on polynomials converges to the
Chevalley polynomial. We use such an iteration to find a Jordan-Chevalley
decomposition and provide a proof according to the reasoning of lemma 3.3.

The Chinese remainder problem in 3.4 is used as an entry point to derive
algorithms for the Chevalley polynomial in [10] [6] and [4]. Some of them
are close or equal to the iteration described by Chevalley. In [4] [5] and [3]
higher-order iterative methods are derived, ultimately leading to an explicit
formula in [7].

Using the Hermite interpolation in lemma 3.3 directly yields an algorithm
to calculating the Chevalley polynomial as is described in [20]. The funda-
mental difference between the Hermite interpolation algorithm and all other
approaches is that a computation of the eigenvalues is not required. Instead,
a set of distinct eigenvalues is implicitly represented by polynomials.

4.1 Hermite interpolation

Algorithm 4.1: Hermite interpolation
input : matrix A of size n× n

1 for i← 0 to m do
2 λi ← the ith distinct eigenvalue of A
3 `i ← the Jordan index of eigenvalue λi

4 end
5 chev(x)← the solution to the interpolation problem in lemma 3.3
6 D ← chev(A), the evaluation of chev(x) on the matrix A
7 return D

11

4. Algorithms

Proof The correctness follows directly from lemma 3.3. �

4.2 Chevalley iteration

One way to turn the proof by Chevalley into an algorithm is by iteration on
matrices. This is not very efficient but serves the purpose of explanation well.

Algorithm 4.2: Chevalley iteration
input : matrix A of size n× n

1 χA(x)← the characteristic polynomial of A
2 µD(x)← χA(x)

gcd(χA(x), χ′A(x)) , the minimal polynomial of D

3 inv(x)← the inverse of µ′D(x) modulo µD(x)

4 S0 ← A
5 while Sk+1 6= Sk do
6 Sk+1 ← Sk − µD(Sk) · inv(Sk)
7 end

8 D ← S`, the converged matrix
9 return D

Proof Recall that the characteristic polynomial is χA(x) = Π(x− λi)
αi and

by definition of the polynomial greatest common devisor, we have

χA(x)
gcd(χA(x), χ′A(x))

= Πm−1
i=0 (x− λi). (4.1)

This is exactly the minimal polynomial of D, since D has no Jordan chains.
Now µ′D(x) and µ(D)) are relatively prime and thus inv(x) is always defined.

We notice that all Sk are implicitly polynomials in A and define the sequence
of polynomial sk(x) such that Sk = sk(A). The Jordan decomposition of Sk is

Sk = sk(A) = V



.

sk(λi) s′k(λi) · · ·
s
(`i−1)
k (λi)

(`i−1)!
.

...
. . . s′k(λi)

sk(λi) 0
.

. . .


V−1.

12

4.2. Chevalley iteration

In theorem 4.1 we will show that the kth step of the Chevalley iteration turns
the kth superdiagonal into zeros and keeps the λis on diagonal unchanged.
As described in lemma 3.4, Sk will converge to D in ` steps. �

Theorem 4.1 Consider the polynomials f (x) = Π(x− xi), without multiple roots,
u(x), such that f ′(x)u(x) = 1 (mod f (x)), and the recursively defined polynomial
sk+1(x) = sk(x)− f

(
sk(x)

)
u
(
sk(x)

)
with s0(x) = x. For every root xi and every

iteration k > 0 we have

sk(xi) = xi and (4.2)

s(j)
k (xi) = 0, ∀j = 1, . . . k. (4.3)

Proof Recall that ∀xi f (xi) = 0⇒ f ′(xi) 6= 0.

We first proove 4.2 by induction on k.

k = 1, i.e. we show that s1(xi) = xi.

Since f (xi) = 0, we have s1(xi) = xi − f (xi)u(xi) = xi

k + 1← k, i.e. we assume sk(xi) = xi and show sk+1(xi) = xi.

We have sk+1(xi) = sk(xi)− f
(
sk(xi)

)
u(sk(xi)) = s1

(
sk(xi)

)
= xi.

Now, we proove 4.3 by induction on k.

k = 1, i.e. we show that s′1(xi) = 0.

Since f ′(xi)u(xi) = 1, we have s′1(xi) = f (xi)u′(xi) = 0

k + 1← k, i.e. we assume s(j)
k (xi) = 0 ∀j = 1, . . . , k and show s(k+1)

k+1 (xi) = 0.

First, we spilt the k + 1 into k and 1, this yields

dk+1

dxk+1 sk+1(x) =
dk

dxk

(
d

dx
s1
(
sk(x)

))
=

dk

dxk

(
s′1
(
sk(x)

)
· s′k(x)

)
.

Then, we use the general Leibnitz rule and get

dk+1

dxk+1 sk+1(x) =
k

∑
j=0

(
k
j

)(
dk−j

dxk−j s′1
(
sk(x)

))
· s(j)

k (x).

After evaluating at xi and applying the induction hypothesis, only
the first summands remains:

dk+1

dxk+1 sk+1(x)
∣∣∣∣

x=xi

=

(
dk

dxk s′1
(
sk(x)

))
· sk(x)

∣∣∣∣
x=xi

13

4. Algorithms

Now we use Faà di Bruno’s formula, then equation 4.2 and finally
apply the induction hypothesis again.

s(k+1)
k+1 (xi) =

(k

∑
j=1

s(j+1)
1

(
sk(xi)︸ ︷︷ ︸
= xi (3.2)

)
︸ ︷︷ ︸

= 0 ∀j>0 (I.H.)

· Bk,j
(
s′k(xi), . . .

))
· sk(xi) = 0 �

Correspondance to newton iteration on matrices

Note that inv(Sk) could be replaced by an inverse matrix, which put us into
the setting of a Netwon iteration over matrices:

Algorithm 4.3: Chevalley iteration on matrices
input : matrix A of size n× n

1 χA(x)← the characteristic polynomial of A
2 µD(x)← χA(x)

gcd(χA(x), χ′A(x)) , the minimal polynomial of D

3 S0 ← A
4 while Sk+1 6= Sk do
5 Sk+1 ← Sk − µD(Sk) · µ′D(Sk)

−1

6 end

7 D ← S`, the converged matrix
8 return D

Chevalley iteration on polynomials

The asympotic complexity of algorithm 4.2 is dominated by the computation
of matrix polynomials in the loop. This can be avoided by computing
the polynomials sk(x) explicitly, using function composition. To keep the
the degree of sk(x) under control, we reduce sk(x) modulo χA(x) in each
iteration.

Proof Correctness follows directly from theorem 4.1 which states that sk(x)
converges towards the Chevalley polynomial chev(x). �

14

4.2. Chevalley iteration

Algorithm 4.4: Chevalley iteration on polynomials
input : matrix A of size n× n

1 χA(x)← the characteristic polynomial of A
2 µD(x)← χA(x)

gcd(χA(x), χ′A(x)) , the minimal polynomial of D

3 inv(x)← the inverse of µ′D(x) modulo µD(x)

4 s0(x)← x, the linear polynomial
5 while sk+1(x) 6= sk(x) do
6 sk+1(x)← sk(x)− µD

(
sk(x)

)
· inv

(
sk(x)

) (
modχA(x)

)
7 end

8 chev(x)← s`(x), the converged polynomial
9 return chev(A)

15

Chapter 5

Implementation

For integer matrices, the characteristic polynomial χA(x) has integer coef-
ficients. This means that the eigenvalues λi are algebraic integers, exactly
represented by χA(x). Usually, eigenvalues are computed and stored as
floating-point approximations on computers. In the special case of integer
matrices, however, it is possible to store an χA(x) exact and thus also an
exact representation of the eigenvalues.

The Hermite interpolation problem in lemma 3.3 is described by eigenvalues.
The Chevalley iteration solves this problem by using polynomials as an exact
representation of these eigenvalues. We observe that the coefficients of all
polynomials 4.4 are rational numbers and can be represented exactly. This
suggests that it is possible to compute the Jordan-Chevalley decomposition
exactly for unweighted graph adjacency matrices.

The Hermite interpolation algorithm requires knowledge about the multi-
plicities of the eigenvalues and is thus only implementable with symbolic
computation. We will therefore focus the Chevalley iteration algorithms.

5.1 Computing the characteristic polynomial

It is well known that the coefficients of the characteristic polynomial of
an n × n matrix can get very large, the bitsize grows in O(n log n). In
[13], Dumas provides an upper bound for the bitsize of the characteristic
polynomial. If all entries of the matrix are bounded in absolute value by B
and ci are the coefficients of its characteristic polynomial, then

log2(|ci|) ≤
n
2
(

log2(n) + log2(B2) + 0.21163175
)
∀ci. (5.1)

Consider for example a binary matrix A of size n > 26. A 64-bit integer might
be to small to store some coefficients of χA(x). This makes it very clear that
we need variable precision integers to store the characteristic polynomial.

17

5. Implementation

Algorithms for the computation of potentially sparse integer matrices are
described in [18] [14] [22]. We decided to use La Budde’s method, a numerical
algorithm described in [23], since it is easy to implement and doesn’t impose
a limit in our use case. We use high-precision floating-point arithmetic and
round the coefficients of the characteristic polynomial to the nearest integer.
The algorithm runs in O(n3), excluding the coefficient grow of O(n log n).

5.2 Computing the polynomial gcd

Since every constant polynomial is a unit of the ring of polynomials, the
polynomial greatest common divisor is only defined up to a constant, i.e.

gcd(p(x), q(x)) = c · gcd(p(x), q(x)). (5.2)

Usually the resulting polynomial is required to be monic, this applies also
to the Chevalley Iteration. Consequently the coefficients of the gcd are
not necessarily rationals. We provide an implementation of the Euclidean
algorithm to compute the gcd, as described for example by Knuth in [19].
The coefficients are stored exactly in a rational number datatype. It runs in
O(n2) for constant size coefficient.

From equation 5.2 follows that the gcd can also be defined for polynomials
with integer coefficients. An integer polynomial is called primitive when
its coefficients are relatively prime, i.e. its representation is minimal. It is
easy to modify the Euclidean algorithm to compute the primitive gcd. This
algorithm has the drawback that the bitsizes of the intermediate results grow
exponentially large. The bitsizes of the results, however, remain surprisingly
moderate. The subresultant algorithm by Braun, Traub and Collins [9] [2]
computes an integer gcd with moderate intermediate bitsizes:

log2(|ci|) ≤ n(log2(n) + log2(B)) ∀ci. (5.3)

We implemented the subresultant algorithm as described by Knuth [19].

5.3 Computing the modulo inverse

The extended Euclidean algorithm computes a Bézout identity

p(x)u(x) + q(x)v(x) = gcd(p(x), q(x)).

If p(x) and q(x) are relatively prime, then u(x) is the inverse of p(x) mod
q(x). We did not find any literature about the bitsizes of u(x) or an extended
version of the subresultant algorithm.

We implemented the Euclidean algorithm with a rational number datatype.
The implementation of this datatype always chooses a minimal represen-
tation by reducing the fractions. So if bitsizes of the intermediate results

18

5.4. How to evaluate polynomials

stay moderate, then this should reflect in the asymptotic behavior of our
implementation.

5.4 How to evaluate polynomials

The Horner scheme states that a polynomial can be rewritten as

p(x) = pnxn + pn−1xn−1 + · · ·+ p1x1 + p0x0

=

(((
0 + pnx0)x + pn−1x0

)
+ · · ·+ p1x0

)
x + p0x0,

where 0 is the additive identity and x0 is the multiplicative identity. This
allows us two evaluate a polynomial with n additions and n multiplications.

We implemented polynomial evaluation for matrices using the Horner
scheme, which runs in O(n4). Note that there are more efficient algorithms,
for example the Paterson-Stockmeyer method [21].

We also used the Horner scheme to implement function composition of poly-
nomials. In this case, 0 and x0 are the constant polynomials 0 respectively 1.
Since we only use the Chevalley polynomial to evaluate it on the input matrix
A, we can reduce it modulo χA(x) after every polynomial multiplication.
This yields an asymptotic complexity of O(n3).

5.5 Computing the Chevalley iteration

As described in the previous chapter, there are two variations of the Chevalley
iteration. We also provide an implementation for both algorithms. For the
iteration on matrices, however, we use the inverse of the matrix and don’t
compute the inverse polynomial.

Combining the asymptotic complexities of the subroutines yields the asymp-
totic complexities of the two Chevalley iteration algorithms.

Algorithm Runtime Bitsize
Computing the characteristic polynomial χA(x) O(n3) O(n log n)
Computing the minimal polynomial µD(x) O(n2) O(n log n)
Computing the modulo inverse inv(x) O(n2) unknown
Chevalley iteration on matrices Sk O(n5) unknown
Chevalley iteration on polynomials sk(x) O(n4) unknown

We observe that the iteration on polynomials is more efficient if we neglect
the coefficient growth. But since we do not need to compute the inv(x) for
the iteration on matrices, it could be possible that it is more efficient overall.

19

5. Implementation

The asymptotic complexity of two Chevalley iteration algorithms depends on
the bitsize of the intermediate results. These bitsizes are currently unknown.
We analyze the asymptotic growth of the bitsize in the next chapter.

20

Chapter 6

Evaluation

In this chapter we evaluate our implementation empirically on Euler at ETH.

6.1 Implementation of the characteristic polynomial

Recall that we compute the characteristic polynomial numerically using high-
precision floating-point arithmetic and then retrieve the correct coefficients
by rounding to the next integer. This means that we have to commit to a
fixed precision before we compute χA(x). But for a fixed precision there is an
upper limit on the size n for which we can compute χA(x) exactly. So up to
which size does our implementation compute the characteristic polynomial
correctly?

Tightness of Dumas bound

Let us start by analyzing the tightness of the Dumas bound empirically. For
a fixed size n = 45 we randomly generate N = 1000 Bernoulli matrices A
with probability p = 0.5. Then we compute χA(x) and determine the bitsize
of its largest coefficient. In figure 6.1 we show a histogram of the largest
coefficients of χA(x). The Dumas bound at n = 45 predicts that the largest
coefficient is 128 bits wide. We observe that in practice, the bitsize does not
exceed 60. Thus, the Dumas bound is not very tight at n = 45.

In figure 6.2, we generate Bernoulli matrices for increasing sizes n, compute
χA(x) and compare the bitsize of its largest coefficient to the Dumas bound.
We observe that the Dumas bound diverges from the measured bitsize with
increasing size. The Dumas bound is generally not very tight which gives
us more flexibility to compute χA(x) exactly. 128-bit quadruple floating-
point has 113-bit precision. This means that the all integers up to 2133 are
represented exactly. According to our measurements it should be possible to
store the characteristic polynomial of n ≈ 75 exactly.

21

6. Evaluation

Figure 6.1: Histogram of the bitsizes of the largest coefficients for χAp(x) with
n = 45. The Dumas bound predicts log2(|ci|) < 128. (N = 1000 samples)

measured bitsize

Dumas bound

0

100

200

300

400

500

600

0 20 40 60 80 100 120 140 160

bits

n

Figure 6.2: Comparison of the Dumas bound with measured bitsizes.

Cayley-Hamilton criterion

In figure 6.3 we use 64-bit, 128-bit and 256-bit floating point precision to
compute χA(x) on Bernoulli matrices. To access the correctness of our
algorithm, we check if the Cayley-Hamilton theorem (thm. 2.7) holds. We
evaluate χA(x) on A and measure the squared Frobenius norm ‖χA(A)‖2

F.
We observe that there is no error up to a certain matrix size:

64-bit double: exact up to size n < 45
128-bit quadruple: exact up to size n < 75
256-bit octuple: exact up to size n < 130

22

6.2. Constructed Jordan matrices

double

mp::quad

mp::oct

1

1E+22

1E+44

1E+66

1E+88

1E+110

1E+132

1E+154

1E+176

1E+198

1E+220

1E+242

1E+264

1E+286

0 20 40 60 80 100 120 140

n

Figure 6.3: Measurements of the Cayley-Hamilton error ‖χA(A)‖2
F for 64-bit,

128-bit and 256-bit floating point precision.

6.2 Constructed Jordan matrices

On first thought, it might seem easy to construct a Jordan normal form to
test the Chevalley iteration on matrices. However, it is rather difficult to
construct a class of Jordan matrices that generate complicated intermediate
polynomials. This is due to the fact that the Chevalley iteration acts directly
on the Jordan normal form and makes use of its properties.

For example the Chevalley iteration of a Jordan block Jλ,` will require a com-
plex characteristic polynomial χA = (x− λ)`, but the minimal polynomial
will be very simple µD(x) = x − λ. So to enforce a complicated minimal
polynomial, we need different eigenvalues. But choosing random eigenvalues
seems to reduce comparability since the spectral radius and the condition
number will vary a lot.

For better comparability, we construct the class of non-diagonalizable matri-
ces as follows: 

0 1
0 0

1 1
1 0

2 1

2
. . .
. . .


.

Note that all Jordan chains are of length 2 and have different eigenvalues.
We will now examine the behavior of the Chevalley iteration on this class of

23

6. Evaluation

non-diagonalizable matrices.

chiA(x)

muD(x)

inv(x)

D

chev(x)

0

50

100

150

200

250

300

350

400

450

500

5 10 15 20 25 30 35 40 45 50 55 60 65 70

bits

n

Figure 6.4: Growth of the bitsizes of the intermediate polynomials with
constructed Jordan matrices as inputs.

on

polynomials

on matrices

0

5

10

15

20

25

30

35

40

45

50

0 20 40 60 80

[s]

n

Figure 6.5: Runtime of the Chevalley iteration algorithms with constructed
Jordan matrices as inputs.

In figure 6.4 we observe that the growth of the bitsizes of all intermediate
polynomials is slightly superlinear, probably O(n log n). This suggests that
that both Chevalley iteration algorithms run in polynomial time on this
special class of matrices.

Indeed, we observe in figure 6.5 that both algorithms compute the Jordan-
Chevalley decomposition in polynomial time. The Chevalley iteration on
matrices has a better asymptotic complexity since the intermediate polyno-
mials with the largest bitsizes chev(x) and inv(x) are not required.

24

6.3. Bernoulli matrices

6.3 Bernoulli matrices

Now we want to tests our implementation on less synthetic matrices, for
example random ones. The difficulty is that the majority of matrices is diago-
nalizable. Recall that it is costly to check whether a matrix is diagonalizable.
It is thus unreasonable to generate random matrices and tests our algorithm
only on the non-diagonalizable ones.

One way to generate random binary matrices is to fix a probability p and then
for each entry draw an independent sample from {0, 1} where the probability
of drawing 1 is p. We call such a matrix a Bernoulli matrix.

Randomly generated Bernoulli matrices are often diagonalizable. If we
choose p = 0.5 and generate N = 100 matrices of size n = 10, then roughly
5% will be non-diagonalizable. The ratio decreases with larger sizes. In figure
6.6 we plot the ratio of non-diagonalizable matrices for increasing matrix size
n and different Bernoulli parameters p.

p=0.5

p=0.25

p=0.125

p=0.0625

0

20

40

60

80

100

120

0 10 20 30 40

%

n

Figure 6.6: Ratio of non-diagonalizable Bernoulli matrices for increasing sizes
n and different parameters p (with N = 100 samples).

We observe two effects. First, for increasing matrix sizes there are generally
more diagonalizable matrices. Secondly, for decreasing p and thus higher
sparsity, there are more non-diagonalizable matrices. Note that very sparse
matrices are usually nilpotent. This means that the Jordan-Chevalley decom-
position is D = 0. Our tests for figure 6.6 show that with p = 0.0625, most of
the matrices are are neither diagonalizable nor nilpotent.

We now examine the Chevalley iteration algorithms on two extremes of
Bernoulli matrices. By choosing p ∈ {0.5, 0.0625} we isolate two random
classes of diagonalizable respectively non-diagonalizable matrices.

25

6. Evaluation

Diagonalizable Bernoulli matrices

Let us first consider Bernoulli matrices with parameter p = 0.5. In figure 6.7
we observe that χA(x) and µD(x) require the same amount of bits and that
the Chevalley polynomial requires 1 bit. These are all signs that the tested
matrices were diagonalizable. Furthermore, we observe that steep curve of
the bitsize of inv(x) implies also a steep cure for the runtime of the iteration
on polynomials, as seen in figure 6.8.

This means that the iteration on matrices is more efficient in determining
that an input matrix is in fact diagonalizable.

chiA(x)muD(x)

inv(x)

chev(x)
0

200

400

600

800

1000

1200

1400

1600

0 10 20 30 40 50

bits

n

Figure 6.7: Growth of the bitsizes of the intermediate polynomials with
Bernoulli matrices as inputs (p = 0.5).

on polynomials

on matrices

0

50

100

150

200

250

300

0 10 20 30 40 50

[s]

n

Figure 6.8: Runtime of the Chevalley iteration algorithms with Bernoulli
matrices as inputs p = 0.5.

26

6.3. Bernoulli matrices

Non-diagonalizable Bernoulli matrices

Now, we consider Bernoulli matrices with parameter p = 0.0625. In figure 6.9
we observe the bitsizes of the intermediate polynomials are more complicated,
since the input matrices are not diagonalizable. The bitsize of inv(x) still
grows faster then the other polynomials and thus dominates the asymptotic
complexity of the iteration on polynomials.

As expected, the iteration on matrices is slower for non-diagonalizable matri-
ces than for diagonalizable ones.

muD(x) &

chiA(x)

inv(x)

chev(x)
D

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 10 20 30 40 50 60

bits

n

Figure 6.9: Growth of the bitsizes of the intermediate polynomials with
Bernoulli matrices as inputs (p = 0.0625).

on

polynomials

on matrices

0

200

400

600

800

1000

1200

0 10 20 30 40 50 60

[s]

n

Figure 6.10: Runtime of the Chevalley iteration algorithms with Bernoulli
matrices as inputs p = 0.0625.

27

6. Evaluation

6.4 Kronecker graphs

In the previous sections we have seen that our implementation of the Cheval-
ley iteration on matrices is faster on all test matrices. Now we use this
implementation to analyze the Jordan-Chevalley decomposition of statistical
Kronecker graphs, as described [15].

To get a general idea of the Jordan structure of such adjacency matrices, we
generate N = 100 matrices for the sizes n = 4, 8, . . . , 128 starting with the
initial probability configuration [

0.9 0.1
0.1 0.9

]
.

In figure 6.11 we show the ratio of non-diagonalizable matrices for increasing
sizes n. We observe that all matrices of size n > 32 are not diagonalizable.

0

20

40

60

80

100

120

0 20 40 60 80 100 120 140

%

n

Figure 6.11: Ratio of non-diagonalizable Kronecker graph adjacency matrices
for increasing sizes n (with N = 1000 samples).

Now, we examine the behavior of the Chevalley iteration on Kronecker graph
adjacency matrices of size n = 2, 8, . . . , 512.

For the computation of the characteristic polynomial we used the software
floating point type mp::1000 provided by the Boost library. It has a mantissa
of 3324 binary digits, which should allow us to compute matrices up to size
n = 1260.

To be sure that the computed Jordan-Chevalley decomposition is correct, we
successfully checked that D and N commute and that N is nilpotent.

28

6.4. Kronecker graphs

In figure 6.12 we observe that all bitsizes grow roughly linearly. Notice that
the bitsizes of entries of the diagonalizable matrix D are moderate even for
large input matrices A.

Assuming, that the bitsizes of muD(x) are in O(1) we derive that the Cheval-
ley iteration on polynomials runs in O(n5) on Kronecker Graph adjacency
matrices. In figure 6.13 we computed the Jordan-Chevalley decomposition of
a Kronecker graph with 1024 nodes in 19 hours and 20 minutes.

chiA(x)

muD(x)
D

0

50

100

150

200

250

300

350

400

0 200 400 600 800 1000 1200

bits

n

Figure 6.12: Growth of the bitsizes of the intermediate polynomials with
Kronecker graph adjacency matrices as inputs.

on matrices

0

10000

20000

30000

40000

50000

60000

0 200 400 600 800 1000 1200

[s]

n

Figure 6.13: Runtime of the Chevalley iteration on matrices with Kronecker
graph adjacency matrices as inputs.

29

Chapter 7

Discussion

As a main result of the empirical evaluation, the polynomials inv(x) and
chev(x) exhibited significant coefficient growth for all classes of test matrices.
The Chevalley iteration on matrices does not require the computation of those
polynomials and is therefore significantly faster than the Chevalley iteration on
polynomials. In practical terms, we can compute the diagonalizable matrix D
more efficiently than the Chevalley polynomial chev(x).

In the following we list an outlook on topics for further research:

Asymptotic complexity In the previous chapter we saw that the bit sizes
of intermediate results did not grow exponentially. This suggests that both
Chevalley iteration algorithms run in polynomial time. Certainly a mathemat-
ical proof of this evidence would be desirable. In particular, the Cramer rule
might be helpful to prove asymptotic complexity for the Chevalley iteration on
matrices.

Floating-point implementation The use of variable precision integers has
the benefit that all computations are exact even for large coefficients. How-
ever, it introduces a significant computational overhead. A floating-point
implementation would allow to speed up the computation dramatically while
it is unclear whether it would suffer from numerical instabilities.

Minimal polynomial and sparsity In both Chevalley iteration algorithms,
we used the characteristic polynomial as an entry point although they also
work with the minimal polynomial. In [13], there is an upper bound for
the coefficients of the minimal polynomial which depends on the spectral
radius. The spectral radius is bound by the sparsity of the matrix, which is
exactly the number of edges of the corresponding graph. Using the minimal
polynomial therefore gives a more fine grained asymptotic time complexity.

31

Chapter 8

Conclusions

We have shown both theoretically and empirically that it is possible to
compute the Jordan-Chevalley decomposition of integer matrices without
symbolic computation. The asymptotic runtime complexity depends on the
size of intermediate results, which appears to be polynomial. In empirical
evaluation, we can compute the diagonalizable matrix D more efficiently
than the Chevalley polynomial chev(x).

Thereby one can simplify the Jordan structure of a matrix without knowing
the structure itself. This can be used to compute the eigenvalues and gener-
alized eigenvectors of a defective integer matrix. As a possible application,
this is useful to compute a subclass of diagonalizable filters in Graph Signal
Processing.

33

Chapter 9

Acknowledgments

I thank Prof. Püschel and Chris Wendler for proposing the topic of the
Bachelor thesis and supervising my work.

I thank Patrick Ziegler and Lukas Looser for intense discussions on several
aspects of the topic.

I thank Camillo de Nardis for cooking for me during the final days of the
work that took place in Corona quarantine.

I thank Tobias Looser, Laure Ciernik and Johannes Sarnthein for comments
on earlier versions of the manuscript.

35

Proof of Taylor theorem for
polynomials

Proof (Theorem 2.10) Consider the polynomial division p(x) = q(x)d(x) +
r(x). We choose d(x) = (x− x0)α0+1 and show that r(x) is the Taylor approx-
imation Tα0 p(x; x0).

The kth derivative of p(x) is given by the general Leibnitz rule

p(k)(x) =
k

∑
j=0

(
k
j

)
q(k−j)(x) · d(j)(x) + r(k)(x).

Since d(j)(x0) = 0 for all j ≤ α0, the sum vanishes for k ≤ αi and we get

p(x0) = r(x0)

...

p(α0)(x0) = r(α0)(x0).

Since these are exactly the properties of the Taylor approximation, we get
Tα0 p(x; x0) = r(x) := p(x) mod d(x). �

37

Bibliography

[1] Theo Beelen and Paul Van Dooren. Computational aspects of the Jordan
canonical form. Technical report.

[2] W S Brown and J F Traub. On Euclid’s Algorithm and the Theory of
Subresultants. Technical report, 1971.

[3] Jean-François Burnol. Décomposition de Jordan-Chevalley-Dunford
effective en temps linéaire. Technical report, 2017.

[4] Jean-François Burnol. Décomposition de Jordan-Chevalley-Dunford et
itérations de Newton-Halley-Householder. Technical report, 2017.

[5] Jean-François Burnol. Itération de Newton-Schröder-Householder et
nouveau nouvel (?) algorithme pour la décomposition de Jordan-
Chevalley-Dunford effective. Technical report, 2017.

[6] Jean-François Burnol. Un (nouvel ?) algorithme pour la décomposition
de Dunford effective. Technical report, 2017.

[7] Jean-François Burnol. Une formule explicite réalisant la décomposition
de Jordan-Chevalley-Dunford effective. Technical report, 2017.

[8] Claude Chevalley. Théorie des groupes de Lie. Tome II, Tome II,. Hermann,
Paris, 1951.

[9] George E Collins. Subresultants and Reduced Polynomial Remainder
Sequences. Technical report.

[10] Danielle Couty, Jean Esterle, and Rachid Zarouf. Décomposition effective
de Jordan-Chevalley et ses retombées en enseignement. 3 2011.

[11] Daniel Ferrand. Une méthode effective pour la décomposition de Dun-
ford. Technical report, 2003.

39

Bibliography

[12] Joya A. Deri and Jose M.F. Moura. Spectral Projector-Based Graph
Fourier Transforms. IEEE Journal on Selected Topics in Signal Processing,
11(6):785–795, 9 2017.

[13] Jean-Guillaume Dumas and Jean Kuntzmann. Bounds on the Coefficients
of the Characteristic and Minimal Polynomials. Technical report, 2007.

[14] Jean Guillaume Dumas, Clément Pernet, and Zhendong Wan. Efficient
computation of the characteristic polynomial. In Proceedings of the Inter-
national Symposium on Symbolic and Algebraic Computation, ISSAC, volume
2005, pages 140–147, 2005.

[15] Jure@cs Stanford Edu, Deepayan Chakrabarti, Jon Kleinberg, Chris-
tos Faloutsos, and Zoubin@eng Cam Ac Uk. Kronecker Graphs: An
Approach to Modeling Networks Jure Leskovec Zoubin Ghahramani.
Technical report, 2010.

[16] G H Golub and J H Wilkinson. Ill-conditioned Eigensystems and the
Computation of the Jordan Canonical Form. Technical Report 4, 1976.

[17] Gaël Guennebaud, Benoı̂t Jacob, and others. Eigen v3.
http://eigen.tuxfamily.org, 2010.

[18] Walter Keller-Gehrig. Fast algorithms for the characteristics polynomial.
Theoretical Computer Science, 36(C):309–317, 1985.

[19] Donald Ervin Knuth. Volume 2: Seminumerical Algorithms. In The Art
of Computer Programming, page 216. 1998.

[20] Panagiotis Misiakos, Chris Wendler, and Markus Püschel. Diagonaliz-
able Shift and Filters for Directed Graphs Based on the Jordan-Chevalley
Decomposition. 2020.

[21] Michael S. Paterson and Larry J. Stockmeyer. On the Number of Non-
scalar Multiplications Necessary to Evaluate Polynomials. SIAM Journal
on Computing, 2(1):60–66, 3 1973.

[22] Clément Pernet and Arne Storjohann. Faster algorithms for the char-
acteristic polynomial. In Proceedings of the International Symposium on
Symbolic and Algebraic Computation, ISSAC, pages 307–314, 2007.

[23] Rizwana Rehman and Ilse C F Ipsen. La Budde’s Method for Computing
Characteristic Polynomials. Technical report, 2011.

[24] Alaeddine Ben Rhouma. Autour de la déecomposition de Dunford réelle
ou complexe. Théorie spectrale et méthodes effectives. 7 2013.

40

Bibliography

[25] Aliaksei Sandryhaila and José M.F. Moura. Discrete signal processing on
graphs. IEEE Transactions on Signal Processing, 61(7):1644–1656, 4 2013.

41

	Introduction
	Background and Notation
	The Problem
	Algorithms
	Hermite interpolation
	Chevalley iteration

	Implementation
	Computing the characteristic polynomial
	Computing the polynomial gcd
	Computing the modulo inverse
	How to evaluate polynomials
	Computing the Chevalley iteration

	Evaluation
	Implementation of the characteristic polynomial
	Constructed Jordan matrices
	Bernoulli matrices
	Kronecker graphs

	Discussion
	Conclusions
	Acknowledgments
	Bibliography

