
Fourier Analysis of Activations in
Neural Networks

Bachelor Thesis

Felipa Schwarz

Tuesday 19th October, 2021

Advisors: Prof. Dr. Markus Püschel, Chris Wendler

Department of Computer Science, ETH Zürich

Abstract

Within the last decade, deep learning methods have replaced the state-
of-the-art in various domains such as computer vision and natural lan-
guage processing. Nevertheless, the interpretability of deep neural ac-
tivations has remained an open case of research. In this work, we
analyze the activations of deep neural networks using causal signal
processing (CSP). CSP is a novel signal processing theory for data in-
dexed by the vertices of a directed acyclic graph like the computational
graph of a neural network. In particular, we collect activation patterns
generated by convolutional neural networks (CNNs) trained on image
recognition, then, apply visualization and clustering techniques on the
activations patterns and their respective Fourier coefficients in CSP to
observe the behavior of neural network signals in the causal Fourier-
domain. Finally, we give interpretations and provide formal reasoning
for our results.

i

Contents

Contents iii

1 Introduction 1

2 Background and Notation 3
2.1 Causal Signal Processing . 4

2.1.1 Poset-Domain . 4
2.1.2 Fourier-Domain . 6

2.2 Neural Networks . 13
2.2.1 Neural Networks are Computational Graphs 13
2.2.2 Deep Neural Networks 15

3 Causal Signal Processing on Neural Networks 21
3.1 Computational Graph as Poset 21
3.2 Activation Pattern as Signal . 22

4 Implementation 25
4.1 Extracting the Computational Graph of a Neural Network . . 25

4.1.1 Extracting the Vertices 26
4.1.2 Extracting the Edges . 26

4.2 Computing the inverse Causal Fourier Transform of a DAG . 29
4.3 Computing the Causal Fourier Transform of a DAG 30
4.4 Computing the Fourier Coefficients 31
4.5 Computational Complexities 31

5 Analysis 33
5.1 Numerical Analysis . 33
5.2 Transform Matrices F and F−1 35

5.2.1 Inverse Fourier Transform Matrix F−1 37
5.2.2 Fourier Transform Matrix F 37

5.3 Signals s and Fourier Coefficients ŝ 41

iii

Contents

5.3.1 Signal s . 41
5.3.2 Fourier Coefficients ŝ . 41

5.4 Clustering . 47

6 Conclusion 51

7 Acknowledgments 53

A Laplacian Graph Fourier Transform 55

B Network Specifications 57

Bibliography 59

iv

Chapter 1

Introduction

In recent years neural networks have attracted tremendous interest in re-
search [26]. They have proven themselves by solving machine learning tasks
and not only outperforming, but reaching far beyond human capabilities
in numerous disciplines [4]. Larger data sets, faster computations, and the
growing complexity of the systems allowed them to accelerate their perfor-
mance and take artificial intelligence to the next level [26]. What was left
behind is our understanding of them [26]. Intermediate computations gen-
erate thousands, even millions of activations yet their meaning surpass our
scope of comprehension. However, for many applications like self-driving
cars [1], healthcare [2], cyber security [1], or solely the ethics of AI [8], the
interpretability of neural networks is indispensable. Extensive research goes
on the quest for a deeper understanding of the self-learning black box [26].

In this thesis, we are going to analyze the activations of neural networks us-
ing recent advances in signal processing (SP). SP is an integral component of
data science and provides complex data processing techniques [7]. Core SP
concepts like translation, invariant filters and associated Fourier transform
serve as a basis for extracting, transforming, and analyzing data [7].

In essence, a neural network is a directed acyclic computational graph and
can be modeled as a layered mesh of consecutive dependencies. Feeding an
input in Rα into a neural network with β neurons yields an activation pat-
tern in Rα+β, which can be considered as a signal. The substantial hurdle
in investigating such signals by applying classical SP techniques for discrete-
time signals is that they neglect the causal dependencies embedded in the
computational graph of a neural network [20]. While some central prop-
erties of classical SP such as linearity smoothly transfer to this irregular
domain, other fundamental concepts like shifts in time raise questions. In
classical discrete time signal processing, we can shift a signal by a number of
steps on the time axes. Yet, how does one even interpret a shift on irregular
domains such as graphs?

1

1. Introduction

Recent works on the theory of SP broaden their foundation by porting clas-
sical SP concepts to data indexed by partially ordered sets (posets) [3]. The
latter having the suitable property of capturing the causality arising from
the underlying structure of a neural network.

In this work, we entered uncharted territory by applying causal signal pro-
cessing (CSP) on activations in neural networks.

1. We trained convolutional neural networks with up to 215 neurons on
image recognition using PyTorch [13], a Python machine learning li-
brary.

2. We implemented the extraction of the directed graph embedded in a
Neural Network and the components of the CSP framework.

3. We collected and transformed samples of activations.

4. We performed an exploratory analysis of data.

This manuscript is organized into four chapters. In Chapter 2 we set the
necessary foundations and notation. We introduce causal signal processing
theory and the basics of neural networks. In Chapter 3 we draw the rela-
tionship between CSP and neural networks and formulate our approach. In
Chapter 4 we outline our implementation including its computational com-
plexities. In Chapter 5 we report a collection of our results and insights.
We visualize and investigate the Fourier transform, activation patterns, and
their Fourier coefficients. Later, we cluster the data and measure its perfor-
mance against spectral graph signal processing [20]. Finally, we provide a
numerical analysis of our computations.

2

Chapter 2

Background and Notation

Symbol Meaning
V set of vertices in the computational graph of a NN
Vi set of vertices in the ith layer of the computational graph of a NN
E set of directed edges between vertices V
Ei set of incoming edges into vertices Vi
` number of layers in a neural network
n number of vertices |V|
ni number of vertices in layer i |Vi|
m number of edges |E |
mi number of incoming edges in layer i |Ei|
deg−(x) number of incoming edges of vertex x
deg+(x) number of outgoing edges of vertex x
A[i,j] reference to entry Ai,j of matrix A
xv reference to the component of vector x, associated with vertex v
Au,v reference to the entry of matrix A, where the row and column

is associated with vertex u and v, respectively
η fixed total order of elements in V
ηv index of vertex v ∈ V in a fixed total order η of elements in V
ei ith standard basis vector in Rn

x ∨ y elementwise logical OR of indicator vectors x and y
x ∧ y elementwise logical AND of indicator vectors x and y
ιx≤y characteristic function of x ≤ y,

ιx≤y = 1 if x ≤ y and 0 otherwise
(ιx≤y)y∈V vector of the element-wise characteristic function of x ≤ y

for all y ∈ V in order η

In this chapter, we first introduce the definitions and concepts of causal sig-
nal processing (CSP). This theory originates from [17] and an up till now un-
published follow-up paper [3]. In [17] and [3] further concepts from classical
signal processing are ported to data-domains modeling causal dependence

3

2. Background and Notation

upon events.

For those unfamiliar with neural networks we explain the fundamental idea
behind them and define common terminologies. This knowledge is neces-
sary to understand their relation to causal signal processing.

We assume prior knowledge of basic linear algebra and graph theory. Famil-
iarity with the basics of machine learning is beneficial.

2.1 Causal Signal Processing

We start by defining our data-domain, the poset-domain, and its notation.
We then fix [3] notion of the Fourier-domain to define a Fourier transform
and filtering operation analogous to classical signal processing.

2.1.1 Poset-Domain

In the following, we specify terminology that describes our data-domain, i.e.
the structure of our data. But first, let us begin with a brief digression:

Causality: Causality studies the influence among elements. In particular, it
is concerned with the relationship between cause and effect. In this regard
causality intrinsically defines a partial order on elements, where one element
x is considered smaller than another element y if x causes y. Formally, we
represent causal elements by the vertices of a graph, in which an edge (x, y)
encodes the causal relationship ‘x is a direct cause of y’ [3]. Reference [14]
defines a causal structure as a directed acyclic graph.

Definition 2.1 (DAG) A directed acyclic graph (DAG) is a graph G = (V , E),
where V = {v1, . . . , vn} is the set of vertices and E = {(vi, vj)| vi, vj ∈ V} is
the set of directed edges without cycles, i.e. there is no path 〈v1, v2, . . . , vk〉 s. t.
(vi, vi+1) ∈ E and v1 = vk.

Example 2.2 Let G = (V, E) be a graph with vertices V = {x1, x2, y1, y2, z1} and
edges E = {(x1, y1), (x1, y2), (x2, y1), (x2, y2), (y1, z1), (y2, z1)}. G is directed and
acyclic as can be seen in Figure 2.1a.

Equivalently, we can represent the set of causal variables as a partially or-
dered set.

Definition 2.3 (Poset) A partial order on a set P is a binary relation that is
reflexive, antisymmetric, and transitive. The combination of a set P and a partial
order relation �, denoted (P , �), is called a partially ordered set (poset).

4

2.1. Causal Signal Processing

Recall that a relation ρ on a set A is called

Reflexive ⇐⇒ a ρ a ∀ a ∈ A
Antisymmetric ⇐⇒ (a ρ b ∧ b ρ a) =⇒ a = b ∀ a, b ∈ A
Transitive ⇐⇒ (a ρ b ∧ b ρ c) =⇒ a ρ c ∀ a, b, c ∈ A

We use a ≺ b to denote (a � b ∧ a 6= b).

In contrast to totally ordered sets, like a time-axis or the integers, not all
elements of posets are necessarily comparable, i.e. there might exist a, b ∈ P
such that a � b and b � a.

Each poset is associated with a DAG, the so-called cover graph.

Definition 2.4 (Cover graph) A cover graph of a poset (P , �) is defined as the
directed graph C = (P , E), where E = {(vi, vj) | vi is covered by vj, vi, vj ∈ P}.
A vertex vi is covered by vj iff vi ≺ vj and there is no vertex vk such that vi ≺
vk ≺ vj.

We go through the next examples to compare the different representations
of causality that we just learned.

Example 2.5 Let (P,≤) be a poset with P = V and vx ≤ vy if (vx, vy) ∈ E
from example 2.2. Here, (P,≤) is the corresponding poset to DAG G. The directed
acyclic graph G is also the cover graph of (P,≤).

Example 2.6 Let us define an extension of graph G by G′ = (V, E′), where E′ =
(x1, z1) ∪ E. G′ is still a DAG as it contains no cycles. (P,≤), as defined in
example 2.5, is the corresponding poset to both DAGs G and G′. However, G′ is
not a cover graph since (x1, z1) ∈ E′ but x1 is not covered by z1 because of y1 or y2.
We say, G is the transitive reduction of G′.

A poset uniquely defines a cover graph which is a DAG by definition. Con-
versely, multiple DAGs can yield the same poset. Specifically, all DAGs with
the same transitive reduction yield the same poset. We obtain a transitively
reduced DAG G by removing all edges (vi, vj) for which we have a vertex
vk such that 〈vi, . . . , vk〉 and 〈vk, . . . , vj〉 are valid paths in G. A transitively
reduced DAG is a cover graph of a poset.

Definition 2.7 (Causal graph) Let P be a set of causally related elements. The
causal graph of P is the cover graph of the poset (P,�) with x � y iff x causes y.

If we assign a value to every element in a causal structure, we obtain a
signal.

Definition 2.8 (Signal) A signal is defined as the data indexed by the elements of
a finite poset (P , �):

s : P → R, p 7→ sp (2.1)

5

2. Background and Notation

x1

x2

y1

y2

z1

1

0 0
1

1
x1

x2

y1

y2

z1

1

0 −1
1

0
x1

x2

y1

y2

z1
(a) Directed acyclic graph
(DAG) G

x1

x2

y1

y2

z1

1

0 0
1

1
x1

x2

y1

y2

z1

1

0 −1
1

0
x1

x2

y1

y2

z1

(b) Signal s = (1, 0, 1, 0, 1)
on G

x1

x2

y1

y2

z1

1

0 0
1

1
x1

x2

y1

y2

z1

1

0 −1
1

0
x1

x2

y1

y2

z1

(c) Fourier coefficients
ŝ = (1, 0, 0,−1, 1) of s

Figure 2.1: A signal of a DAG assigns a value to each vertex. The Moebius
function yields the Fourier coefficients of the signal.

We will use s as s = (sp)p∈P ∈ R|P|.

Example 2.9 s = (sx1 , sx2 , sy1 , sy2 , sz1) = (1, 0, 1, 0, 1) is a signal on DAG G.
Signal s is illustrated in Figure 2.1b.

For the order of values in s we fix one total order compatible with the partial
order of the poset, e.g. a topological order of the cover graph.

Definition 2.10 (Total order) We denote a fixed total order of poset elements by
the bijective map

η : P → {1, . . . , |P|}, p 7→ ηp (2.2)

where
p � q =⇒ ηp ≤ ηq (2.3)

is satisfied for all p, q ∈ P .

So far we have specified our data-domain which we refer to as the poset-
domain. We will now introduce [3] notion of the Fourier-domain.

2.1.2 Fourier-Domain

We start by defining our notion of the Fourier transform in CSP [3]. We
justify it by showing its analogy to the classical signal processing Fourier
transform.

Classical Fourier Transform

In classic one-dimensional discrete time signal processing the Fourier trans-
form of a signal x is defined as

x̂k =
N

∑
n=1

xn · e−
i2πkn

N , (2.4)

where i is the imaginary unit, N is the number of samples and x̂k denotes
the kth base frequency, i.e., Fourier coefficient. In other words, the Fourier
transform of x is the linear expansion of complex exponentials, decomposing
a signal x into its base frequencies x̂.

6

2.1. Causal Signal Processing

Frequencies Imagine we hear someone simultaneously playing three keys
on the piano, two with more power and one with less. What we hear is
the wave of the signal in the time-domain. The Fourier transform of this
signal yields the base frequencies, which will have three peaks, two higher
and one lower. These peaks correspond to the three notes. In this sense, the
classical Fourier transform decomposes a piano sound into its constituent
frequencies. In this particular example, the Fourier transform recovers ’pure
information’.

The zeta function extends the discussion of causality from the previous chap-
ter.

Definition 2.11 (Zeta function) The zeta function encodes the order relation of
two elements x and y.

ζ(x, y) =

{
1 if y ≤ x
0 otherwise

(2.5)

Translating this to our causal structure, the zeta function states whether
there exists a directed path from vertex y to vertex x or whether y causes x.

Causes - events - effects Recall our intuition of causality. Every vertex x
in our causal DAG represents an event. Therefore a DAG can be seen as a
chain or rather a network of reactions. One event x causes another event y
iff there is a path from x to y. The set of vertices that can reach x along some
path are the causes of x. The set of vertices reachable from x are the effects
of x. Let’s consider the causal model proposed by [3] in which the signal
value sx is defined as the cumulative value of x′s causes. This dependency
can be written as

sx = ∑
y≤x, y∈P

ŝy = ∑
y∈P

ζ(x, y) ŝy , (2.6)

where ŝy is the non-cumulative, unobserved strength of a cause y [3]. If
an event has no causes it is considered a root cause. A root cause is not
influenced by any other events and so is its value. Therefore, the unobserved
strength ŝx of a root cause x is equal to its observed value sx.

Conversely, we can reconstruct the strength ŝx of a cause x by using the
inverse of the zeta function.

Definition 2.12 (Moebius inversion) The Moebius function is the inverse of
the zeta function and defined as

µ(x, x) = 1 ,

µ(x, y) = − ∑
y≤z<x

µ(z, y).

7

2. Background and Notation

We get
ŝx = ∑

y∈P
µ(x, y)sy. (2.7)

In other words, the Moebius function states in which way one needs to lin-
early combine the observed values sy such that one obtains the unobserved
values of strength ŝx. Similar to the classical Fourier transform, the Moebius
function recovers information from a superposition of elementary informa-
tion [3]. Using the Moebius function we define the causal Fourier transform.

Definition 2.13 (Fourier transform) The Fourier transform of a signal s in the
poset-domain is defined as

ŝ = F s (2.8)

with the Fourier transform matrix with entries

Fx,y = µ(y, x) ιy≤x (2.9)

for all x, y ∈ P . We also refer to ŝ as Fourier coefficients or spectrum [3].

Example 2.14 The Fourier transform matrix of G is

F =

1 0 0 0 0
0 1 0 0 0
−1 −1 1 0 0
−1 −1 0 1 0
1 1 −1 −1 1

 (2.10)

where we used the same topological order as in example 2.9.

Example 2.15 ŝ = (ŝx1 , ŝx2 , ŝy1 , ŝy2 , ŝz1) = (1, 0, 0,−1, 1) are the Fourier coeffi-
cients of signal s from example 2.9. ŝ is illustrated in Figure 2.1c.

Definition 2.16 (Inverse Fourier transform) The corresponding inverse Fourier
transform of Fourier coefficients ŝ is

s = F−1ŝ (2.11)

with the inverse Fourier transform matrix F−1, which is the inverse of F or
explicitly

F−1
x,y = ζ(x, y) = ιy≤x (2.12)

for all x, y ∈ P [3].

Example 2.17 The inverse Fourier transform matrix of G is

F−1 =

1 0 0 0 0
0 1 0 0 0
1 1 1 0 0
1 1 0 1 0
1 1 1 1 1

 (2.13)

8

2.1. Causal Signal Processing

Note, that F−1 does not distinguish between DAGs G and G′ from exam-
ple 2.5 and 2.6, respectively. This because G and G′ have the same causal
graph. Their transitive reductions yield the same cover graph, and hence
poset. In other words, F−1 encodes the transitive closure of a DAG. What
should be taken from this observation is that a Fourier transform of a signal
s on graphs with the same causal graph, yields the same Fourier coefficients
ŝ.

Causal Convolution

This section underlines how causal signal processing integrates the causality
embedded in our poset-domain while elaborating its relation to the classical
Fourier transform.

Definition 2.18 (Causal shift) In our interpretation a causal shift by an arbi-
trary element q ∈ P shifts every signal s to sum common causes of the two elements
q and y. This shift can be performed by matrix Tq ∈Nn×n [3]:

Tqs = Cq ŝ (2.14)

where matrix Cq ∈ {0, 1}n×n denotes the common causes matrix given by

Cq(x,y) = ζ(x, y) ∧ ζ(q, y) = F−1
(x,y) ∧ F

−1
(q,y). (2.15)

The second equality holds by definition of F−1. Equivalently we can rewrite the
rows of Cq as

Cq(x,:) = F−1
(x,:) ∧ F

−1
(q,:) (2.16)

By the expansion Tqs = Cq ŝ = CqF s of equation (2.14) we derive

Tq = CqF (2.17)

Example 2.19 The common causes matrix Cy1 of vertex y1 in DAG G is given by

Cy1 =

1 0 0 0 0
0 1 0 0 0
1 1 1 0 0
1 1 0 0 0
1 1 1 0 0

 (2.18)

The corresponding interpretation on the graph is illustrated in Figure 2.2. We
observe that every row Cq(v,:) contains the common causes of v and y1.

Example 2.20 The corresponding shift matrix Ty1 is given by

Ty1 =

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
1 1 0 0 0
1 1 1 0 0

 (2.19)

9

2. Background and Notation

x1

x2 y2

z1

y1

Figure 2.2: Causes of y1 are circled by the dotted line. Common causes of y1
and a vertex in G are the colored fields within the dotted line.

Shifting signal s from example 2.9 by y1 we get Ty1 s = (1, 0, 1, 1, 2) = Cy1 ŝ.

Shifting events Recall that the value of event x is the sum of the unob-
served strengths of all causes of x. Now if we shift an event x by event
q then x’s value is only the sum of unobserved strengths of those causes
which also cause q, i.e, their common causes. Consequently, if x and q have
no causes in common, meaning that there no event y affects both x and q,
then the shifted value of x is 0. On the other hand, if q is the event x itself
or q is an effect of x, then the value of x is not altered by the shift. The shift
Tq removes all unobserved strengths in a signal s that are not causes of q or
q itself.

In classical discrete time signal processing, the Fourier transform is the ex-
pansion of a signal s in terms of the complex exponentials, which are the
eigenvectors of all shifts. We show that the same applies to the causal
Fourier transform basis vectors.

Lemma 2.21 (Fourier basis) The columns of our inverse Fourier transform ma-
trix, i.e. the vectors that span our Fourier basis

fy = F−1
(:,y) (2.20)

are simultaneous eigenvectors of all shifts [3].

Proof Let Tq be the shift matrix of an arbitrary element q ∈ V and fy = F−1
(:,y)

an arbitrary Fourier basis vector. We obtain

Tqfy (2.17)
= (CqF)fy (2.20)

= Cq(FF−1
(:,y)) = Cqey = Cq(:,y) , (2.21)

where ey denotes the yth standard basis vector.

For the next step, we think of how we can construct Cq using equation (2.16).
We can take the row F−1

(q,:) and scan F−1 from top to bottom, like a sliding
window, while performing the element-wise logical and operation between

10

2.1. Causal Signal Processing

row F−1
(q,:) and a row in F−1. As a result we obtain Cq. What does this mean

for a column Cq(:,y)? If our sliding window is 0 at F−1
(q,y), the column Cq(:,y)

will be the null vector. If our sliding window is 1 at F−1
(q,y) it will simply copy

the entries from F−1
(:,y), which is equal to fy, in column y.

It follows

Tqfy (2.21)
= Cq(:,y) =

{
1 · fy if F−1

(q,y) ,

0 · fy otherwise ,
(2.22)

meaning that fy is an eigenvector to the eigenvalue 1 if F−1
(q,y), i.e. y ≤ q, and

an eigenvector to the eigenvalue 0 otherwise. �

Lemma 2.21 implies that our Fourier basis simultaneously diagonalizes all
shift matrices. Formally, for a particular Tq and its eigenvalues

λy =

{
1 y ≤ q
0 otherwise

(2.23)

for all y ∈ P we get

FTqF−1 =

. . .

λy
. . .

 ∈ {0, 1}n×n. (2.24)

In classical discrete time signal processing filtering, i.e. convolution, is the
process of representing an input signal s as a linear combination of complex
exponentials [20]. Likewise

Definition 2.22 (Causal convolution) A causal filter is defined as a linear com-
bination of shifts h = ∑q∈P hqTq and provides us with a notion of causal convo-
lution defines as

h ∗ s =

(
∑

q∈P
hqTq

)
s (2.25)

[3].

Filtering events: Rewriting the convolution (2.25) as

h ∗ s =

(
∑

q∈P
hqCqF

)
s =

(
∑

q∈P
hqCq

)
ŝ (2.26)

gives us some intuition of the meaning behind it. For every q ∈ P a filter
h assigns a factor hq of importance to the causes of q and q itself. The im-
portance of an event x is the sum of factors hq of importance it has received.

11

2. Background and Notation

After convolution with h, the new unobserved strength of an event x is the
original strength multiplied with its importance.

The convolution theorem is a fundamental property of the Fourier transform
in classical discrete time signal processing. It states that the convolution of
a signal in the time domain corresponds to point-wise multiplication in the
Fourier domain. We show that the same applies in CSP.

Theorem 2.23 The convolution of a signal in the poset-domain corresponds element-
wise multiplication in the Fourier-domain.

h ∗ s = F−1(h̄�F s) , (2.27)

where � denotes the element-wise multiplication.

Proof

h ∗ s =

(
∑

q∈P
hqTq

)
s

= F−1F
(

∑
q∈P

hqTq

)
F−1F s

lin.
= F−1

(
∑

q∈P
hqFTqF−1

)
F s

(2.24)
= F−1

∑
q∈P

hq

. . .

λy
. . .

F s

= F−1

∑
q∈P

...

hqλy
...

�F s

= F−1 (h̄�F s

)
�

12

2.2. Neural Networks

2.2 Neural Networks

This section covers the basics of neural networks. The objective is to under-
stand the underlying structure of a neural network. We start by looking at
its fundamental concept. Later we explain how classic deep neural networks
are built and introduce corresponding terminology which is relevant for the
next chapters. [9] and [11] were used as a reference for this section.

Machine learning (ML) has given rise to a new popular predictive method-
ology. Neural networks, whose name is inspired by the architecture and
learning process of a human brain [11].

Imagine you take a picture of your cat. While your human brain sees an
image of a cat to a computer this is just a matrix with a collection of numbers.
It can not identify the image as a cat unless it is explicitly told so. If you take
another picture of your cat the next day you will again see your cat. To a
computer this a another matrix of different values. How could it identify the
second image as a cat? Explicitly writing the code for a cat classifier is hard.
This is where neural networks come in. We can find a cat classifier by fitting
the weights of a neural network to data through optimization, also referred
to as the training phase. Given enough data, i.e. sample images of cats and
not cats, they can be trained to classify an arbitrary new image as a cat or not
cat.

Neural NetworkInput Output

cat
not cat{ 0

1

Cat-image-https://blog.mystart.com/my-cats-adorable-cat-kitten-hd-wallpapers/, 24-09-2021

Figure 2.3: An input image is fed into the neural network. The network
evaluates all pixels values of the image to determine whether it is a cat or
not. Here, the output is given in form of a one-hot encoding which is typical
for classification tasks [9].

2.2.1 Neural Networks are Computational Graphs

Essentially every neural network represents one (large) mathematical func-
tion. The general structure of the function is predefined by the architecture
of the network. The exact function however is obtained by step-wise refine-
ment during the training process.

13

https://blog.mystart.com/my-cats-adorable-cat-kitten-hd-wallpapers/

2. Background and Notation

x1

x2

y1

y2

z1
ϕ(x1 ⋅ 1 + x2 ⋅ 1 − 1.5) =

ϕ(x1 ⋅ 1 + x2 ⋅ 1 − 0.5) =1
1
1

1

1
ϕ(y1 ⋅ 1 + y2 ⋅ (−1) − 0.5) =−1

x1

x2

y1

y2

z1
ϕ(x1 ⋅ 1 + x2 ⋅ 1 − 1.5) =

ϕ(x1 ⋅ 1 + x2 ⋅ 1 − 0.5) =1
1
1

1

1
ϕ(y1 ⋅ 1 + y2 ⋅ (−1) − 0.5) =−1

Figure 2.4: Computational graph of equation (2.28). x1 and x2 are input
vertices. y1 and y2 are intermediate vertices. For input x ∈ R2, y1 and y2
detect the logical x1 OR x2 and logical x1 AND x2, respectively. The output
vertex z1 builds upon y1 and y2 to compute the more complicated function
f (x) = x1XORx2.

Definition 2.24 (Computational Graph) A Computational Graph is a way
to express and evaluate a mathematical function in the terms of graph theory. It
is a directed graph where every vertex corresponds to a mathematical operation.
Incoming edges deliver the necessary variables for the operation. The result of the
operation is forwarded along the outgoing edges as an input variable of further
operations. The vertices without incoming edges are defined as input vertices. The
vertices without outgoing edges are defined as output vertices. All remaining ones
are intermediate vertices.

Example 2.25 Consider the function

f (x) = ϕ (ϕ(x1 + x2 − 0.5)− ϕ(x1 + x2 − 1.5)− 0.5) (2.28)

with

ϕ(x) =

{
1 if x ≥ 0,
0 otherwise.

(2.29)

One can easily verify that f effectively classifies a given input x = [x1, x2] ∈
{0, 1}2 as

f (x) =

{
1 if x1 XOR x2

0 else
(2.30)

Equivalently we can depict this classification in form of a computational graph as
can be seen in Figure 2.4.

A neural network is a computational graph. We could say the computa-
tional graph in Figure 2.4 is a tiny neural network that computes x1 XOR x2.
However, when we refer to neural networks, we use a different terminology.

Definition 2.26 (Neuron) The vertices of the computational graph of a neural
network are called neurons. We refer to the input vertices of the computational
graph as input neurons, the intermediate vertices as intermediate neurons, and
output vertices as output neurons.

14

2.2. Neural Networks

https://pub.towardsai.net/the-architecture-and-implementation-of-vgg-16-b050e5a5920b, 24-09-2021

Figure 2.5: The architecture of the VGG-16 [21]. The image on the left is the
input. Every one of the 16 cuboids represents one layer. The output layer is
the last cuboid on the right.

Definition 2.27 (Input) The input of a neural network are the values assigned to
the input neurons.

Definition 2.28 (Output) The output of a neural network are the values com-
puted at the output neurons.

Definition 2.29 (Activation) For a given input, the weighted sum computed at
each individual neuron in a neural network is called activation.

Definition 2.30 (Activation pattern) The activation pattern generated by an
input is the collection of activations of all neurons in the neural network.

2.2.2 Deep Neural Networks

Typically neural networks are composed of building blocks called layers. A
network with at least one layer between the input and output is a deep
neural network [9]. Figure 2.5 shows the architecture of the neural network
VGG-16 [21]. It is composed of 16 layers of three different types and an input
layer. In this section, we shortly describe the layer types used in the networks
of our experiments. In the following, understanding the examples of the
corresponding layer types is more important than their formal equations.
The definitions originate from [13].

Definition 2.31 (Linear layer) For incoming data x ∈ Rni−1 a linear layer ap-
plies an affine transformation of the form

y = xAT + b (2.31)

15

https://pub.towardsai.net/the-architecture-and-implementation-of-vgg-16-b050e5a5920b

2. Background and Notation

4
∑
i=0

xi ⋅ A1i + b1 =

x1

x4

x3

x2

A11

A12 A21
A22A13 A23

A14 A24
y2

y1

Layer ii − 1Layer

4
∑
i=0

xi ⋅ A2i + b2 =

Figure 2.6: Linear layer i with input x ∈ R4 and output y ∈ R2

where A ∈ Rni×ni−1 and b ∈ Rni , hence y ∈ Rni [13].

A linear layer is also called a fully connected layer. Looking at its compu-
tational graph, we see that every input neuron is connected to every output
neuron.

Example 2.32 Figure 2.6 illustrates the computational graph of a linear layer i
with input x ∈ R4 and output y ∈ R2.

When classifying images, it is not helpful to look at one pixel at a time. In
order to identify larger patterns, we take neighbourhoods of 3× 3 or 5× 5
pixels and summarize their importance in a single activation.

Definition 2.33 (Maximum pooling layer) A maximum pooling layer takes an
input x ∈ RC×H×W and applies a kernel of size Hk ×Wk to produce output

yc,i,j = max
h∈{1,...,Hk}

max
w∈{1,...,Hw}

xc, Hk ·(i−1)+h, Wk ·(j−1)+w , (2.32)

where y is in R
C× H

Hk
× W

Wk [13].

Example 2.34 Figure 2.7 gives an example for a maximum pooling layer i with
input x ∈ R4×4×4 and a kernel of size 2× 2. y ∈ R4×2×2 is the output of layer
i. The kernel acts like a sliding window on the input. It considers all xc for some
c ∈ {1, · · ·C} separately. It starts in the top left corner of xc and copies the
maximum value of xc, screened by the kernel window, to the top left corner of the
output yc. Sliding to the side by Wk = 2 or up and down by Hk = 2 it repeats the
process.

Definition 2.35 (Average pooling layer) An average pooling layer takes an in-
put x ∈ RC×H×W and applies a kernel of size Hk ×Wk in the following way

yc,i,j =
1

Hk ·Wk

Hk

∑
h=1

Wk

∑
w=1

xc, Hk ·(i−1)+h, Wk ·(j−1)+w (2.33)

16

2.2. Neural Networks

2.5 4

4.5 2

2.5 4

4.5 2

2.5 4

4.5 2

6 4

5 3

Kernel

x =

Layer ii − 1Layer

= y

W

H

C

Wk

Hk

1 1 4 3

2 6 0 1

0 4 2 2

0 5 1 3

1 1 4 3

2 6 0 1

0 4 2 2

0 5 1 3

1 1 4 3

2 6 0 1

0 4 2 2

0 5 1 3

1 1 4 3

2 6 0 1

5 4 2 2

0 5 1 3

max

Figure 2.7: Input x ∈ R4×4×4 and output y ∈ R4×2×2 of a maximum pooling
layer with a 2× 2 kernel.

[13].

Example 2.36 Figure 2.8 gives an example of an average pooling layer. The setup
is the same as in example 2.34 except that the type of layer i to an average pooling
layer. The definition of the kernel changes. It takes the average of all values screened
by the kernel and copies it to the output.

Kernel

2.5 4

4.5 2

2.5 4

4.5 2

2.5 4

4.5 2

2.5 2

3.5 2

x =

Layer ii − 1Layer

= y

W

H

C

Wk

Hk

1 1 4 3

2 6 0 1

0 4 2 2

0 5 1 3

1 1 4 3

2 6 0 1

0 4 2 2

0 5 1 3

1 1 4 3

2 6 0 1

0 4 2 2

0 5 1 3

1 1 4 3

2 6 0 1

5 4 2 2

0 5 1 3

1
4 ∑

Figure 2.8: Input x ∈ R4×4×4 and output y ∈ R4×2×2 of an average pooling
layer with a 2× 2 kernel.

Definition 2.37 (Convolutional layer) In the simplest case, a convolutional
layer takes an input x ∈ RCin×Hin×Win and applies Cout ·Cin kernels K1, . . . , KCin·Cout

each of size Hk ×Wk to produce an output y ∈ RCout×Hout×Wout . The operations de-
fined as

yk = bk +
Cin

∑
c=1

Kk,c ? xc , (2.34)

where yk ∈ {1, . . . , Cout}, bk ∈ RHout×Wout and ? denotes the valid cross-correlation
operator. ? depends on various other parameters not explained here for the sake of

17

2. Background and Notation

brevity. In the simplest case,1 we get

(Kk,c ? xc)i,j =
Hk

∑
h=1

Wk

∑
w=1

Kk,c,h,w · xc, (i−1)+h, (j−1)+w (2.35)

for i ∈ {1, . . . , Hout} and j ∈ {1, . . . , Wout}.

Example 2.38 Figure 2.9 illustrates a convolutional layer i with input x ∈ R4×4×4

and 8 kernels of size 2× 2. y ∈ R2×3×3 is the output of layer i. First, for every pair
of input xc and corresponding kernel Kk,c the sum of element-wise multiplications, is
computed as in equation (2.35). The operation then sums up the Cin = 4 matrices
of size Hout ×Wout = 3 × 3 and adds a bias term bk ∈ RHout×Wout for every
k ∈ {1, . . . , Cout}.

0 -1

1 0

= yx =
1 2 -3

-6 4 1

-4 3 -1

1 2 -3

-6 4 1

-4 3 -1

1 2 -3

-6 4 1

-4 3 -1

1 2 -3

-1 4 1

-4 3 -1

1 1 4 3

2 6 0 1

0 4 2 2

0 5 1 3

1 1 4 3

2 6 0 1

0 4 2 2

0 5 1 3

1 1 4 3

2 6 0 1

0 4 2 2

0 5 1 3

1 1 4 3

2 6 0 1

5 4 2 2

0 5 1 3

1 2 -3

-6 4 1

-4 3 -1

1 2 -3

-6 4 1

-4 3 -1

1 2 -3

-6 4 1

-4 3 -1

9 6 12

14 14 3

19 11 9

Kernelsi − 1Layer

4
∑
c=1

+ b1 = y111 y113y112

y131 y133y123

y121 y123y122

y211 y213y212

y231 y233y223

y221 y223y222

Win

Hout

Cin

Wk

Hk

Cout

iLayer Feature maps

4
∑
c=1

+ b2 =
Win

Hin

y211 y213y212

y231 y233y223

y221 y223y222

Cin

y111 y113y112

y131 y133y123

y121 y123y122

2 1

0 1

Figure 2.9: Illustration of a convolutional layer i with 8 kernels of size 2× 2.
The 4× 4× 4 matrix x on the left is taken as an input. The output of the
layer is the 2× 3× 3 matrix y on the right. The dotted lines illustrate the
computation of the cross-correlation ?.

During the training phase of a neural network, the values in the kernels
and bias terms are being refined in a self-correcting manner. In a linear
layer, this corresponds to the entries in matrix A and b. Recall that a linear
layer has inputs x ∈ Rni−1 and outputs y ∈ Rni . In cases where a layer
with output x ∈ RCout×Hout×Wout precedes a linear layer the x is reshaped into
vector x ∈ RCout·Hout·Wout .

1[13] stride = 1, dilation = 1 and padding = 0

18

2.2. Neural Networks

Definition 2.39 (Channels) Let y ∈ RCout×Hout×Wout be the output of a layer i. A
submatrix yc ∈ RHout×Wout is referred to as channel or output channel of layer
i. Accordingly, for the input x ∈ RCout×Hout×Wout of layer i, a submatrix xc ∈
RHin×Win is referred to as input channel.

Definition 2.40 (Feature map) We refer to a feature map with respect to a chan-
nel as the set of values in that channel.

Example 2.41 The feature maps computed by the convolutional layer in Figure 2.9
are the values in the two matrices of size 3× 3, i.e. the two output channels.

19

Chapter 3

Causal Signal Processing on Neural
Networks

In the last Section, we explained how a neural network takes values of pix-
els and transforms them across multiple layers. In Figure 2.4, we have seen
that activations of neurons are influenced by activations of previous neurons.
Unfortunately, the meanings behind the intermediate activations are not al-
ways as clear as in the carefully constructed example 2.25. While there are
evident reasons to believe that large networks encode deeper information in
the values of their intermediate layers, up till now, it remains challenging to
reveal this information [26].

We now show how the causal signal processing framework on posets may
provide a mathematical tool to analyze activation patterns of neural net-
works.

3.1 Computational Graph as Poset

The computational graph of a neural network is, for most architectures1,
a DAG. By V we denote the set of vertices in the computational graph, i.e.
neurons in the neural network. The computational graph has directed edges
where the activation of one neuron is a direct input to the activation of
another neuron. As described in section 2.1, this directed acyclic graph,
encoded by a neural network, contains a poset.

We formalize this with some notation that we will use throughout the re-
maining chapters of this thesis.

By ` we denote the number of layers in a neural network including the input

1Recurrent neural networks (RNN) have backward edges. Their computational graph is
not acyclic. In this case we limit the RNN to t processing steps such that we can unroll it.

21

3. Causal Signal Processing on Neural Networks

layer. Our set of vertices V is defined by

V =
⊎̀
i=1

Vi (3.1)

, where] denotes the disjoint union and Vi the set of neurons in the ith
layer. In particular, V1 is the set of input neurons and V` is the set of output
neurons. By ni we denote the number of neurons in layer i, i.e. ni = |Vi|.

Example 3.1 In Figure 2.9 we observe that there are multiple intermediate com-
putations or values within one layer i. There is some degree of freedom in which
elements one considers as a vertex in the computational graph and which ones one ig-
nores or, stated in graph theoretical-terms, contracts. In our definition Vi is the set of
output elements in matrix y ∈ R2×3×3. Hence, we get ni = 2 · 3 · 3 = 18. Accord-
ingly, Vi−1 is the set of elements in matrix x ∈ R4×4×4 and ni−1 = 4 · 4 · 4 = 64.

The set of edges E is given by

E =
⊎̀
i=1

Ei =
⊎̀
i=2

Ei (3.2)

, where Ei denotes the set of edges incoming to neurons in Vi. Since the input
V1 has no incoming edges we have E1 = ∅ and m1 = |E1| which explains
the second equality in (3.2). We have an edge from u to v, if the value at u is
used in the intermediate calculations of neuron v.

Graph G = (V , E) is a directed acyclic computational graph. (V ,�), with
u � v if (u, v) ∈ E , is the partially ordered set contained in the computa-
tional graph of a neural network.

3.2 Activation Pattern as Signal

Every input of a neural network yields an activation pattern. Every activa-
tion value in the activation pattern is associated with one neuron. Therefore
we have values indexed by the elements of the poset (V ,�) of a neural net-
work. An activation pattern is a signal s on this poset (V ,�).

Example 3.2 The signal values associated with the neurons, i.e. elements in V ,
in the convolutional layer of Figure 2.9 are all yc,h,w for c ∈ {1, 2} and h, w ∈
{1, 2, 3}.

Example 3.3 In example 2.25 we constructed a tiny neural network computing
the XOR of an input x ∈ {0, 1}2. Figure 2.4 shows its computational graph. The
corresponding DAG that we use in the signal processing framework is precisely the
one in Figure 2.1a. Let x = [x1, x2] = [1, 0] be the input. Feeding x into the
computational graph in Figure 2.4 we get y1 = 1, y2 = 0 and z1 = 1. This is the

22

3.2. Activation Pattern as Signal

signal shown in Figure 2.1b. The corresponding Fourier coefficients are shown in
Figure 2.1c.

Take a closer look at function (2.28). At the end of the calculations at a neuron,
a function ϕ (2.29) is applied. Such functions, so-called activation functions, are
very typical in neural networks as they bound the values in the activations.2 In this
thesis, we consider the values after the activation function is applied.

Project Outline In this thesis, we collect and explore neural activation pat-
terns of various neural networks trained on image recognition. In particular
we will:

• Train convolutional neural networks (CNNs) with up to 215 neurons
on image datasets MNIST, Cifar10 and FashionMNIST.3

• Extract their associated computational graphs and activation patterns
generated by various input images.

• Compute their Fourier transform and coefficients.

• Perform a numerical analysis of our results.

• Visualize and cluster the data.

2Usually activation functions are differentiable, unlike ours
3The network specifications are listed in Table B.1 in the appendix.

23

Chapter 4

Implementation

We built and trained neural networks on image datasets using the open
source machine learning framework PyTorch [13]. We then took input im-
ages and captured the activations generated after each layer of the neural
network.

This chapter describes in which way we implemented the components of
the CSP framework. We start by extracting the computational graph with
its respective neurons and their connections in form of a directed graph. We
then compute the Fourier transform, its inverse, and the Fourier coefficients.
Finally, we give a short summary of the computational complexity of our
implementation.

The following sections outline our implementation of the CSP framework.
For faster implementations, we refer to [16]. It develops a novel approach
that produces zeta and Moebius transforms with reduced overall memory
consumption and runtime.

We used NetworkX [5], a python package for networks that provides us
with a graph data-structure and functions for basic graph operations. For
the data clustering, we used scikit-learn [15]. scikit-learn is an open-source
machine learning library that provides tools for predictive data analysis.

4.1 Extracting the Computational Graph of a Neural
Network

Given a trained neural network we need to construct its underlying compu-
tational graph G = (V , E). First, we create the set of vertices V . Second, we
insert the edges E .

25

4. Implementation

4.1.1 Extracting the Vertices

A convenient way to retrieve the set of vertices V is to directly feed a sample
input into the neural network and collect its generated activation pattern 1.
The n0 input values and n− n0 activation values constitute one signal s ∈ Rn.
Every value in the signal is indexed by exactly one vertex in V . Every vertex
in V is associated with exactly one element of the signal. Therefore we can
construct V by inserting a vertex for every value in s.

This can be executed in O(n).

4.1.2 Extracting the Edges

We propose two possible approaches to retrieve the set of directed edges E2.
Both approaches start with the empty set E = {} and insert incoming edges
of a vertex ascending by layer, hence the input layer 1 can be skipped.

Approach 1: Layer type (specific)

The straightforward approach is to explicitly define the incoming edges for
each layer type. Then, iterating through layers i = {2, . . . , l}, we add edges
Ei depending on the type of layer i.

For some layer types this can be trivial:

Example 4.1 Let layer i be a linear layer, also known as a fully connected layer.
Then

Ei = {(u, v) | u ∈ Vi−1, v ∈ Vi} (4.1)

is its set of edges.

The crucial drawback of this approach is the scalability with regard to the
variety of layer types. For every new type of layer contained in a network,
one has to define an edge-retrieving function. On top of this, the implemen-
tation of many layer types turns out to be tedious.

Example 4.2 Parameters of a convolutional layer like: kernel size, stride, padding,
dilation and the number of groups all affect the way edges are drawn.

Approach 2: Jacobian matrix (generic)

Recall that each layer is essentially defined by a differentiable3 function fi
that takes the activations from the previous layer4 i− 1 as an input x ∈ Rni−1

to compute the activations of the current layer i as an output y ∈ Rni .
1The retrieval of this pattern depends on the neural network framework used.
2Depending on the NN framework used for implementation other convenient methods

to define E may arise.
3Differentiability is essential for the training process of a NN.
4collection of previous layers in the case of residual neural networks (ResNets).

26

4.1. Extracting the Computational Graph of a Neural Network

For simplicity, we display the Jacobian matrix for input vector x and output
vector y. In example 4.4 we will extend both to two dimensional matrices.
We use the matrix notation as defined in [22]. In general, the concept applies
to any input and any output dimension.

Definition 4.3 (Jacobian Matrix) Let

fi : Rni−1 → Rni , x 7→ y

be a function where all first-order partial derivatives exist. Then the Jacobian
matrix represents all first-order partial derivatives of the function fi.

J(fi) =

∂y1
∂x1

∂y1
∂x2

· · · ∂y1
∂xni−1

∂y2
∂x1

∂y2
∂x2

· · · ∂y2
∂xni−1

...
...

. . .
...

∂yni
∂x1

∂yni
∂x2

· · · ∂yni
∂xni−1

∈ Rni−1×ni

We take the output activations of layer i− 1 as an input x and compute the
Jacobian matrix of the layer function fi. We get:

J(fi)(u,v) 6= 0 =⇒ vertex u is an input of vertex v (4.2)

Using equation (4.2) we can define

Ei = {(u, v) | J(fi)(u,v) 6= 0} (4.3)

In particular, J(f)(u,v) contains the parameter in the kernel associated with
edge (u, v).

Example 4.4 Let layer i be a convolutional layer with one kernel k. Then fi is the
convolutional function (2.34) with kernel k. Furthermore, let x be the activation in
layer i− 1 with ni−1 = 9 activations. By definition of fi the activation y in layer i
has shape = 2× 2 with ni−1 = 4 activations.

x =

x1 x2 x3
x4 x5 x6
x7 x8 x9

 k =

[
k1 k2
k3 k4

]
y =

[
y1 y2
y3 y4

]

27

4. Implementation

J(fi) =

[∂y1
∂x

] [
∂y2
∂x

]
[

∂y3
∂x

] [
∂y4
∂x

]
 =

∂y1
∂x1

∂y1
∂x2

∂y1
∂x3

∂y1
∂x4

∂y1
∂x5

∂y1
∂x6

∂y1
∂x7

∂y1
∂x8

∂y1
∂x9

∂y2
∂x1

∂y2
∂x2

∂y2
∂x3

∂y2
∂x4

∂y2
∂x5

∂y2
∂x6

∂y2
∂x7

∂y2
∂x8

∂y2
∂x9

∂y3
∂x1

∂y3
∂x2

∂y3
∂x3

∂y3
∂x4

∂y3
∂x5

∂y3
∂x6

∂y3
∂x7

∂y3
∂x8

∂y3
∂x9

∂y4
∂x1

∂y4
∂x2

∂y4
∂x3

∂y4
∂x4

∂y4
∂x5

∂y4
∂x6

∂y4
∂x7

∂y4
∂x8

∂y4
∂x9

=

k1 k2 0
k3 k4 0
0 0 0

0 k1 k2
0 k3 k4
0 0 0

 0 0 0

k1 k2 0
k3 k4 0

0 0 0
0 k1 k2
0 k3 k4

 ∈ Rni−1×ni

The fact that J(f)(u,v) holds the edge weight of edge (u, v) introduces special
cases to consider:

Dead edges During the training process of a network edge weights can
diminish to 0 or almost 0. In such cases, it is a matter of design choice
whether one introduces some threshold value θ ∈ R and replaces (4.3) by

Ei = {(u, v) | J(fi)(u,v) ≥ θ} (4.4)

Alternatively one can reassign all edge weights to 1 in function fi before
computing J(fi). In this thesis, we opt for the latter.

Input-value dependent edges Some edge weights depend on the specific
activation values contained in x. Different images generate different signals,
hence different activations. We want our computational graph to be inde-
pendent of specific signals. It should represent any possible flow of values.
This is why some layer types require a workaround.

Example 4.5 Let us continue the example 4.4 but change layer i to a Maximum
Pooling layer. We show that two different input activations x and x′ yield different
matrices J(fi(x)) and J(fi(x′)).

x′ =

1 0 1
0 0 0
1 0 1

 J(fi(x′)) =

1 0 0
0 0 0
0 0 0

0 0 1
0 0 0
0 0 0

0 0 0

0 0 0
1 0 0

0 0 0
0 0 0
0 0 1

28

4.2. Computing the inverse Causal Fourier Transform of a DAG

x =

0 0 2
0 1 0
0 0 0

 J(fi(x)) =

0 0 0
0 1 0
0 0 0

0 0 1
0 0 0
0 0 0

0 0 0

0 1 0
0 0 0

0 0 0
0 1 0
0 0 0

Workaround: Changing function fi from a Maximum Pooling function to Average
Pooling function we get:

J(fi) =

1/4 1/4 0
1/4 1/4 0
0 0 0

0 1/4 1/4

0 1/4 1/4

0 0 0

 0 0 0

1/4 1/4 0
1/4 1/4 0

0 0 0
0 1/4 1/4

0 1/4 1/4

for any input.

The algorithm of the first approach runs inO(mi). This amounts toO(∑l
i=2 mi) =

O(m) for the entire graph.

The algorithm of the second approach runs in O(tjac + ni−1 · ni). Where
tjac denotes the time required to compute the jacobian matrix. We assume
that the jacobian matrix can be computed using the layer function fi, hence
tjac ∈ O(ni−1 · ni). This amounts to O(∑l

i=2 ni−1 · ni) = O(n2) for the entire
graph. In the last step, we used l � n, which means that the number of
layers l is negligible compared to n.

In practice, a hybrid version of the two approaches can be used since each
layer is evaluated independently. One can implement the most frequently
used layer types explicitly and back up with the second approach to broaden
the range of analyzable networks.

4.2 Computing the inverse Causal Fourier Transform of
a DAG

Given the cover graph, we can compute the inverse causal Fourier transform
F−1. Recall that

F−1
[ηx ,ηy]

=

{
1 if y ≤ x,
0 otherwise.

(4.5)

29

4. Implementation

We can extend equation (4.5) for F−1
[ηx ,:] ∈ {0, 1}n as follows:

F−1
[ηx , :] = (ιy≤x)y∈V (4.6)

= (ιy<x)y∈V ∨ (ιy=x)y∈V (4.7)

=
∨

(y, x)∈E
(ιz≤y)z∈V︸ ︷︷ ︸

(4.6)

∨ (0
0
, . . . , 0

ηx−1
, 1

ηx
, 0

ηx+1
, . . . , 0

η−1
) (4.8)

In (4.8) we used that all causes of x must either be direct causes y of x, or
causes z of the direct causes y. We see that the row ηx of a vertex x in F−1

is recursively defined as the element-wise or of the rows of all its direct
ancestor vertices and (ιy=x)y∈V ∈ {0, 1}n. Equation (4.8) defines an iterative
way to compute F−1 for ascending rows ηx.

The asymptotic time complexity to compute row ηx of a vertex x isO(deg+(x) ·
n) if the computational graph is stored as an adjacency list. This yields an
O(∑v∈V deg+(v) · n) = O(mn) algorithm to define F−1.

4.3 Computing the Causal Fourier Transform of a DAG

For visualization purposes, we want to compute matrix F . Taking the in-
verse F−1 lead to low numerical precision, so we used the explicit Moebius
function.

Recall that

F[ηx ,ηy] = µ(y, x)

=

0 if x � y ,
1 if x = y ,
−∑y≤z<x µ(y, z) otherwise.

(4.9)

We observe a recursive equation (4.9). For ascending rows ηx this lets us
compute all entries of F iteratively. The asymptotic complexity to compute
one entry F[ηx ,ηy] depends on the number of elements z such that y ≤ z < x
and the time it takes to retrieve them.

For all vertices z with ηz ∈ {ηy, . . . , ηx − 1}, we can lookup y ≤ z and z ≤ x
in F−1. Given F−1, the lookup takes O(1) time per vertex which amounts to
O(n) in total. Additionally, we can skip all lookups if x � y, i.e. F−1

[ηx ,ηy]
= 0.

Filling all entries of F requires O(n3 + mn) = O(n3) time.

30

4.4. Computing the Fourier Coefficients

4.4 Computing the Fourier Coefficients

Given the inverse Fourier transform matrix F−1 ∈ Zn×n and a signal s ∈ Rn

we can compute the Fourier coefficients ŝ ∈ Rn of the respective signal by
solving the following equation for ŝ.

F−1ŝ = s

By definition of the zeta function and η, F−1 is lower triangular. Thus we
can solve the linear system of equations in O(n2).

4.5 Computational Complexities

We summarize the computational complexities derived in this chapter:

Algorithm Runtime
Computing the vertices of the cover graph V O(n)
Computing the edges of the cover graph E O(n2)
Computing the inverse Fourier transform F−1 O(nm)
Computing the Fourier transform F O(n3)
Computing the Fourier coefficients ŝ O(nm + n2)
Computing the Fourier coefficients ŝ of k signals O(nm + kn2)

Bounding m In common neural networks we have Θ(ni) = O(mi) =
Ω(ni−1 · ni). Maximum pooling and average pooling layers are layer types
for which we have mi = c · ni ∈ O(ni), c ∈ N. c depends on the kernel size.
A linear layer has exactly ni−1 · ni edges. Ultimately, the number of edges in
a neural network depends on its design.

Example 4.6 Let us define a neural network of one single linear layer which takes
x ∈ R

n
2 as input and produces output y ∈ R

n
2 . By definition of a linear layer, the

neural network has n
2 ·

n
2 = O(n2) edges.

For this reason, we use m ∈ O(n2).

31

Chapter 5

Analysis

This chapter is concerned with the analysis of the data that we retrieved. We
will start by verifying the numerical precision of the data. Second, we ex-
amine the transform matrices and their structure in neural networks. Later
we visualize the activation patterns and their corresponding Fourier coef-
ficients. Finally, we use k-means clustering to search for patterns in the
Fourier-domain.

Recall, that η defines the total order of the poset elements. The total order
defined here is ascending by layer, channel, row, and column.

Example 5.1 In Figure 2.9, this corresponds to ηx4,4,4 ≤ ηy1,1,1 ≤ ηy1,1,2 · · · ≤
ηy1,2,1 · · · ≤ ηy2,1,1 . Note that x is in layer i− 1 and y in layer i.

When we visualize signals in Rn, we reshape them into the dimensions of
the original activation pattern. This way, we can associate every signal value
with its position in the neural network. We display layers and channels as
separate matrices.

5.1 Numerical Analysis

Before we start inspecting the generated data, we assess its numerical preci-
sion. In order to do so, we compute an approximation s̃ of a signal s as

s̃ := F−1ŝ , (5.1)

where ŝ is precomputed by solving the lower triangular linear system F−1ŝ =
s. We then calculate the absolute and relative errors.

Definition 5.2 (Errors) For vector s ∈ Rn and approximation s̃ ∈ Rn

the absolute error is defined as

εabs := |s− s̃| (5.2)

33

5. Analysis

standard column normalization row normalization

Network n m cond2(F) ‖εabs‖∞ ‖εrel‖∞ cond2(F) ‖εabs‖∞ ‖εrel‖∞ cond2(F) ‖εabs‖∞ ‖εrel‖∞

1 3098 80640 1 · 10+06 0 · 10+00 0 · 10+00 3 · 10+05 1 · 10−12 6 · 10−10 6 · 10+04 1 · 10−11 1 · 10−08

2 8506 237600 5 · 10+07 0 · 10+00 0 · 10+00 1 · 10+07 1 · 10−10 5 · 10−08 1 · 10+06 1 · 10−10 8 · 10−08

3 9594 474240 5 · 10+08 1 · 10−07 4 · 10−05 2 · 10+07 1 · 10−07 2 · 10−05 1 · 10+07 2 · 10−10 1 · 10−07

4 9834 535840 1 · 10+13 4 · 10−05 1 · 10−01 5 · 10+11 3 · 10−05 2 · 10−01 2 · 10+11 4 · 10−07 1 · 10−03

5 11166 658024 1 · 10+13 3 · 10−05 1 · 10−02 5 · 10+11 3 · 10−05 1 · 10−02 1 · 10+11 7 · 10−07 1 · 10−04

6 23338 1802400 3 · 10+13 9 · 10−05 1 · 10+00 1 · 10+12 9 · 10−05 1 · 10+00 6 · 10+11 4 · 10−07 5 · 10−04

7 30282 2579264 5 · 10−05 1 · 10+04 5 · 10−05 1 · 10+04 3 · 10−07 1 · 10+02

Table 5.1: Condition number and maximum errors of 1000 samples on net-
works with n vertices and m edges.

and the relative error is defined as

εrel :=
|s− s̃|
|s| (5.3)

[6].

The relative error estimates the number of correct digits in an approximation
s̃ of s. If

εrel :=
|s− s̃|
|s| ≤ 10−k (5.4)

, then s̃ has k correct digits, k ∈N [6].

The sensitivity of a linear map s 7→ F−1s =: ŝ, evaluates the impact of small
perturbations in s on the result ŝ. The condition number quantifies this
sensitivity.

Definition 5.3 (Condition number) The condition number of a matrix A ∈
Rn×n on the Euclidean norm is defined as

cond2(A) := ‖A−1‖2‖A‖2 . (5.5)

If cond2(A)� 1, then small relative changes of data A or b may effect huge relative
changes in b 7→ A−1b =: b̂ [6].

Table 5.1 shows the maximum errors ‖εabs‖∞ and ‖εrel‖∞ of 1000 random
samples for each of our networks. For those networks trained on the same
dataset, we used the same set of random samples. The errors of the data
are severe. We experience relative errors of up to 4 orders of magnitude.
Normalizing the columns or rows of the transform matrix F−1, mitigates
the condition number of the linear system. In the case of row normalization
this leads to lower absolute and relative errors.

We suspect that the errors first arise when solving F−1ŝ = s for ŝ. In this
process, rows of F−1 and components in s are multiplied by constants and
later subtracted off each other. This can lead to cancellation, i.e. subtraction
of almost equal numbers in s and an extreme amplification of relative errors

34

5.2. Transform Matrices F and F−1

[6]. The second step (5.1) accumulates these errors. A component s̃x sums
up all errors in ŝy where y ≤ x in the partial order. The latter suggests that
errors get larger towards deeper layers. In general, the deeper the neuron x
lies in the neural network, the more causes y, with y ≤ x it has.

Figure 5.1 plots |sx − s̃x| for each neuron x separately. We see that the errors
in Table 5.1 are largely caused by the neurons towards the end of the net-
works. Furthermore, we observe a step-wise increase along the horizontal
axis η. These steps are related to the partial order of the neurons in the
poset. In general, the larger the set of causes |{y |y ≤ x}|, the larger is the
error |sx − s̃x|. Note, the total order η of the poset elements is defined on
top of the partial order. Any valid total order η of the poset elements would
yield a similar step-wise increase of the errors in Figure 5.1.

Moreover, the plot may explain why row normalization exhibits lower nu-
merical errors than column normalization. Row normalization divides the
rows of a matrix by their norm. The row norm of F−1

x,: is

‖F−1
x,: ‖2 =

√
|{y |y ≤ x}|. (5.6)

If a neuron x has many causes, the row of F−1 will be divided by a large
number. When (5.1) is computed for a component s̃x it accumulates all errors
in ŝy, where y ≤ x, divided by the row norm. This reduces the error in deep
layers, where neurons have a large set of causes.

Column normalization divides the columns of a matrix by their norm. The
column norm of F−1

:,x is

‖F−1
:,x ‖2 =

√
|{z |x ≤ z}|. (5.7)

When (5.1) is computed for a component s̃x, not all ŝy, where y ≤ x, are
divided by a large norm. ŝy is divided by the number of causes that y has.
This number is small for neurons that lie in deeper layers. Figure 5.2 of the
following section 5.2 helps to illustrate this numerical analysis.

5.2 Transform Matrices F and F−1

Different causal graphs yield different transform matrices. In this section
we observe the structures of the transform matrices F and F−1 of CNNs.

The networks that we analysed throughout this project have up to 215 neu-
rons. To illustrate some of our insights on A4-paper, we create a network
with just 71 neurons. Its specifications are listed in Table 5.2.

35

5. Analysis

ηx

|sx − s̃ x |

ηx

|sx − s̃ x |

Layer 5 (maxpool)Layer 4 (convolution)

ηx

|sx − s̃ x |

Layer 6 (linear)

Layer 7 (linear)

Layer 8 (linear)

ηx

|sx − s̃ x |

Layer 5 (maxpool)Layer 4 (convolution)

Figure 5.1: Maximum |sx − s̃x| of N = 1000 samples in Network 4. The
horizontal axis is given in ηx. The magnitude of the error is closely related
to the deepness of the neuron x in the neural network. In other words, to its
number of causes.

36

5.2. Transform Matrices F and F−1

Lay
er

Type
V i In

put wid
th

In
put heig

ht

Outp
ut wid

th

Outp
ut heig

ht

In
put ch

an
nels

Outp
ut ch

an
nels

Ker
nel

wid
th

Ker
nel

heig
ht

1 Input 25 5 5 1
2 Conv. 18 5 5 3 3 1 2 3 3
3 Conv. 16 3 3 2 2 2 4 2 2
4 Linear 8 16 8
5 Linear 4 8 4

Table 5.2: Network specifications

5.2.1 Inverse Fourier Transform Matrix F−1

Recall the definition of F−1. A row F−1
x, : encodes all causes of x. A column

F−1
:, x encodes all effects of x. The causal relationships of neurons are defined

by their respective layer types. Plotting the inverse Fourier transform matri-
ces of our CNNs, we found very characteristic and recurring structures.

Figure 5.2 plots these typical patterns. The illustration is best understood by
self-verifying the annotations. We summarize some key observations:

• F−1 can be clearly divided into its ` layers, both horizontally and
vertically.

• The block matrices along the diagonal corresponding to one layer i, are
identity matrices of dimension ni × ni. This is the case, since there are
no edges between two neurons in one layer.

• A convolutional operation in layer i is identified by the steps in layer
i − 1. We can find very detailed information of a layers specification
such as the kernel width and height, the number of incoming and
outgoing channels or input and output dimensions.

• The pattern corresponding to the indirect causes of a layer i, i.e. the
neurons that lie in layers {1, . . . , i − 2} can be inferred using equa-
tion (4.8).

• A neuron in a linear layer i has edges to all neurons in Vi−1. Every
neuron in layers {1, . . . , i − 2} has at least one effect in layer i − 1.
Hence the causes of a neuron in layer i is the union of all Vj for j ∈
{0, · · · , i− 1}.

5.2.2 Fourier Transform Matrix F
A row Fx, : describes in which way a signal s is linearly combined to obtain
the Fourier coefficient ŝx. Unlike the inverse transform matrix, the values

37

5. Analysis

kernel width = 3
kernel height = 3

Vi = 25

Vi = 4

Vi = 8

Vi = 16

Vi = 18

out channels = 2

kernel height = 2
kernel width = 2

Layer 1

η

η

stride = 1

dilation = 1

in channels = 2

in channels = 1

input height = 5
input width = 5

input height = 3

input width = 3

output width = 3

output height = 3

out channels = 4output height = 2
output width = 2

Layer 5

Layer 4

Layer 3

Layer 2

input width = 16

input width = 8

Figure 5.2: F−1 ∈ {0, 1}71×71 of the CNN specified in Table 5.2. The blue
squares indicate the value 1 in F−1. The total order η on neurons is defined
ascending by layer, channel, row, and column in the activation pattern.

in F are integer values. Since the Moebius function is a recursively defined
function and not explicit, it is not easy to guess which values we will find in
F .

Expanding the definition of F will help to reason about later observations:

Fx,y =

{
1 if x = y ,
−∑y≤z<x µ(y, z) otherwise.

(5.8)

=

0 if x � y ,
1 if x = y ,
−1 if (y, x) ∈ E ,
−∑y≤w≤z,

(z,x)∈E
µ(y, w) otherwise.

(5.9)

Figure 5.3 and 5.4 illustrate the cases of equation (5.9).

38

5.2. Transform Matrices F and F−1

Figure 5.3: F of the CNN specified in Table 5.2.

We see, F = 0 whenever F−1 = 0, which corresponds to the first case in
equation (5.9). Moreover for all values along the diagonal we have Fx,x = 1.
Given a neuron x ∈ Vi in layer i and a neuron y ∈ Vi−1, we see that entries
F−1

x,y = −1 if (y, x) ∈ E . The last case of equation (5.9) explains the highly
repetitive pattern of values within one layer in F . It shows that Fx,y only
depends on y and the direct causes of x, namely {z | (z, x) ∈ E}.

Linear layer Any neuron x ∈ Vi, with i being a linear layer, has incoming
edges from all neurons in Vi−1. As a consequence all x ∈ Vi have the same
set of direct causes, i.e. {z | (z, x) ∈ E} is the same set for any x ∈ V .

Convolutional layer By definition of the convolutional layer i, any neuron x
at position [c, h, w] in the activation pattern has the same set of direct causes
as neuron x′ at position [c′, h, w], where c and c′ are any two output channels
and h and w are fixed. Formally, {z | (z, x) ∈ E} = {z | (z, x′) ∈ E}.

Therefore, it is sufficient to compute the entries of F for one row of a lin-

39

5. Analysis

Figure 5.4: Repetitive patterns in F

40

5.3. Signals s and Fourier Coefficients ŝ

ear layer to infer the entries of all other rows associated with this layer i.
Likewise, we can compute the rows associated with one channel of a convo-
lutional layer to infer the entries of all other channels.

Figure 5.4 shows that there are in fact many more repetitive patterns found
in the Fourier Transform of a CNN. Such patterns can be exploited to de-
crease runtimes.

5.3 Signals s and Fourier Coefficients ŝ

CNNs trained on image data have the nice property that their features maps
are well-visualizable. In this section, we look at the signals s and their coef-
ficients ŝ. Figures 5.5 and 5.6 show sample activation patterns of Network
3 and 7, respectively. The corresponding Fourier coefficients are shown in
Figures 5.7 and 5.8.

5.3.1 Signal s

The activation patterns generated by the Networks are typical. Especially
in the initial layers, we see that the feature maps learned to detect very
simple, low-level characteristics of the input image such as lines and edges.
The consecutive layers build on top of these simple features and construct
more complicated ones. The deeper we go, with respect to layers, the more
abstract the features get.

In Figure 5.5, the first two channels (top left) of Layer 1 clearly learned to
detect horizontal edges while channels 3 and 4 (top right) detect vertical
edges. In Figure 5.6 the entirely white channels correspond to so-called
dead neurons, which we addressed in Section 4.1.2. If all incoming edges of
a neuron are dead, i.e. their weight is close to 0, the neuron does not receive
any input and is never activated. The large number of dead channels in
Figure 5.6 attributes to the excess amount of channels. In the third layer of
Figure 5.6, we see that some channels, retrieve the plaid texture of the shirt
while channels 1, 10 and 12 predominantly extract vertical lines. Channel 15
in layer 4 seems to mask the object of the input image.

Towards the end of neural networks feature detectors become very com-
plicated and non-human interpretable. While the Network in Figure 5.5
correctly classifies the input images in the output layer as 1, 4, and 7, it is
difficult to visually understand how it obtains this information, given layer
5.

5.3.2 Fourier Coefficients ŝ

In contrast to the signal, we immediately observe that the channels within
one layer in the Fourier-domain look extremely similar.

41

5. Analysis

0

5

10

15

20

25

2 1 0 1 2

Layer 1

0

5

10

15

20

25

2 1 0 1 2

Layer 1

0

5

10

15

20

25

2 1 0 1 2

Layer 1

0

10

20

0

10

20

0

10

20

8 6 4 2 0 2 4 6 8

Layer 2

0

10

20

0

10

20

0

10

20

6 4 2 0 2 4 6

Layer 2

0

10

20

0

10

20

0

10

20

7.5 5.0 2.5 0.0 2.5 5.0 7.5

Layer 2

0

5

10

0

5

10

0

5

10

4 2 0 2 4

Layer 3

0

5

10

0

5

10

0

5

10

4 2 0 2 4

Layer 3

0

5

10

0

5

10

0

5

10

4 2 0 2 4

Layer 3

0

5

0

5

0

5

0

5

0

5

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0

Layer 4

0

5

0

5

0

5

0

5

0

5

15 10 5 0 5 10 15

Layer 4

0

5

0

5

0

5

0

5

0

5

10 5 0 5 10

Layer 4

0

2

0

2

0

2

0

2

0

2

6 4 2 0 2 4 6

Layer 5

0

2

0

2

0

2

0

2

0

2

6 4 2 0 2 4 6

Layer 5

0

2

0

2

0

2

0

2

0

2

6 4 2 0 2 4 6

Layer 5

0.5
0.0
0.5

15 10 5 0 5 10 15

Layer 6

0.5
0.0
0.5

15 10 5 0 5 10 15

Layer 6

0.5
0.0
0.5

20 15 10 5 0 5 10 15 20

Layer 6

Figure 5.5: Three activation patterns on Network 3. The classification given
by the Network is the class of the maximal value in layer 6.

42

5.3. Signals s and Fourier Coefficients ŝ

0

5

10

15

20

25

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

Layer 1

0

5

10

15

20

25

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

Layer 1
0

5

10

15

20

25

0.75 0.50 0.25 0.00 0.25 0.50 0.75

Layer 1

0

20

0

20

0

20

0

20

4 3 2 1 0 1 2 3 4

Layer 2

0

20

0

20

0

20

0

20

3 2 1 0 1 2 3

Layer 2

0

20

0

20

0

20

0

20

3 2 1 0 1 2 3

Layer 2

0

20

0

20

0

20

0

20

6 4 2 0 2 4 6

Layer 3

0

20

0

20

0

20

0

20

4 2 0 2 4

Layer 3

0

20

0

20

0

20

0

20

3 2 1 0 1 2 3

Layer 3

0

10

0

10

0

10

0

10

4 3 2 1 0 1 2 3 4

Layer 4

0

10

0

10

0

10

0

10

3 2 1 0 1 2 3

Layer 4

0

10

0

10

0

10

0

10

3 2 1 0 1 2 3

Layer 4

0

100

100

100

100

100

100

100

10

6 4 2 0 2 4 6

Layer 5

0

100

100

100

100

100

100

100

10

6 4 2 0 2 4 6

Layer 5

0

100

100

100

100

100

100

100

10

4 2 0 2 4

Layer 5

Figure 5.6: Three activation patterns on Network 7

43

5. Analysis

0

5

10

15

20

25

2 1 0 1 2

Layer 1

0

5

10

15

20

25

2 1 0 1 2

Layer 1

0

5

10

15

20

25

2 1 0 1 2

Layer 1

0

10

20

0

10

20

0

10

20

40 20 0 20 40

Layer 2

0

10

20

0

10

20

0

10

20

40 20 0 20 40

Layer 2

0

10

20

0

10

20

0

10

20

40 30 20 10 0 10 20 30 40

Layer 2

0

5

10

0

5

10

0

5

10

100 50 0 50 100

Layer 3

0

5

10

0

5

10

0

5

10

100 50 0 50 100

Layer 3

0

5

10

0

5

10

0

5

10

100 50 0 50 100

Layer 3

0

5

0

5

0

5

0

5

0

5

4000 2000 0 2000 4000

Layer 4

0

5

0

5

0

5

0

5

0

5

4000 2000 0 2000 4000

Layer 4

0

5

0

5

0

5

0

5

0

5

4000 2000 0 2000 4000

Layer 4

0

2

0

2

0

2

0

2

0

2

10000 5000 0 5000 10000

Layer 5

0

2

0

2

0

2

0

2

0

2

10000 5000 0 5000 10000

Layer 5

0

2

0

2

0

2

0

2

0

2

10000 5000 0 5000 10000

Layer 5

0.5
0.0
0.5

200000 100000 0 100000 200000

Layer 6

0.5
0.0
0.5

600000400000200000 0 200000400000600000

Layer 6

0.5
0.0
0.5

400000300000200000100000 0 100000200000300000400000

Layer 6

Figure 5.7: Fourier signals ŝ corresponding to signals s in Figure 5.5.

44

5.3. Signals s and Fourier Coefficients ŝ

0

5

10

15

20

25

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

Layer 1

0

5

10

15

20

25

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

Layer 1
0

5

10

15

20

25

0.75 0.50 0.25 0.00 0.25 0.50 0.75

Layer 1

0

20

0

20

0

20

0

20

10 5 0 5 10

Layer 2

0

20

0

20

0

20

0

20

7.5 5.0 2.5 0.0 2.5 5.0 7.5

Layer 2

0

20

0

20

0

20

0

20

8 6 4 2 0 2 4 6 8

Layer 2

0

20

0

20

0

20

0

20

1000 500 0 500 1000

Layer 3

0

20

0

20

0

20

0

20

800 600 400 200 0 200 400 600 800

Layer 3

0

20

0

20

0

20

0

20

600 400 200 0 200 400 600

Layer 3

0

10

0

10

0

10

0

10

2000 1000 0 1000 2000

Layer 4

0

10

0

10

0

10

0

10

1500 1000 500 0 500 1000 1500

Layer 4

0

10

0

10

0

10

0

10

1500 1000 500 0 500 1000 1500

Layer 4

0

100

100

100

100

100

100

100

10

300000 200000 100000 0 100000 200000 300000

Layer 5

0

100

100

100

100

100

100

100

10

100000 50000 0 50000 100000

Layer 5

0

100

100

100

100

100

100

100

10

100000750005000025000 0 250005000075000100000

Layer 5

Figure 5.8: Fourier signals ŝ corresponding to signals s in Figure 5.6. Layers
6-8 not shown.

45

5. Analysis

All input neurons, which are found in layer 1, are unchanged after the trans-
formation. This is as expected. In the poset, the inputs are the root causes
of all other events, hence their signal values are not dependent on others.
Formally, we get:

ŝx = Fx,:s (5.10)

= ∑
y≤x, y∈V

µ(y, x)sy (5.11)

= ∑
y<x, y∈V

µ(y, x)sy + µ(x, x)sx (5.12)

= sx (5.13)

Subsequent layers look like blurred versions of their previous layer trans-
ferred to a different scale. While we have a slight perceptual channel differ-
ence in low levels1, deeper down the layers all channels appear the same.
The same applies to all coefficients in the linear layers. We justify this strong
similarity between the channels as follows:

ŝx = Fx,: · s (5.14)

= ∑
y≤x, y∈V

µ(y, x) · sy (5.15)

= ∑
y<x, y∈V

µ(y, x) · sy + µ(x, x) · sx (5.16)

= ∑
y<x, y∈V

(
− ∑

y≤z<x
µ(z, y)

)
· sy︸ ︷︷ ︸

(5.17.1)

+ sx︸︷︷︸
(5.17.2)

(5.17)

We see that equation (5.17.1) only depends on causes of x, not x itself. Hence,
if causes of poset elements x and x′ majorly overlap and the value of (5.17.1)
� (5.17.2) then sx ≈ sx′ .

In section 5.2 we addressed the overlap of causes in convolutional and linear
layers. For convolutional layer i this suggests that the subtraction of two
channels [c, :, :] and [c′, :, :] in the Fourier-domain yields the same result as
their subtraction in the poset-domain as equation (5.17.1) cancels out:

ŝ[c,:,:] − ŝ[c′,:,:] = s[c,:,:] − s[c′,:,:] (5.18)

Indeed we can verify equation (5.18) empirically, as seen in Figure 5.9. Anal-
ogously, this applies to any two neurons in a linear layer.

1or none if you are reading this on paper

46

5.4. Clustering

(a)

(e)(d)

(c)

(b) (f) (g)

800-800 400-400 0

Figure 5.9: Visualization of equation (5.18) for the convolutional layer i = 3
in Network 6. (a) and (b) are two channels in s, (c) and (d) correspond to
the same two channels in ŝ. (e) = (a) - (b) and (f) = (c) - (d). The subtraction
of (g) = (e) - (f) has entries 0, i.e. (e) is equal to (f).

5.4 Clustering

We want to find out whether the Fourier coefficients ŝ belonging to images
of the same class resemble each other. Is there a pattern in the coefficients
such that we can identify the class of the input image?

In order to find out, we cluster the data using the unsupervised learning
technique K-means clustering. K-means partitions a sample set of N discrete
oberservations x ∈ Rd into K groups, so-called clusters. Formally:

Definition 5.4 (K-Means) Assume data points x ∈ Rd are in the Euclidean space.
The clusters are represented as centers σk ∈ Rd. Each data point x is assigned to
the closest center σk ∈ {σ1, . . . , σK}. The goal is to pick centers σ̃ that minimize the
cost function R calculating the squared distance of x to its assigned center:

R(σ) = R(σ1, . . . , σK) =
N

∑
i=1

min
k∈K{1,...,K}

‖xi − σk‖2
2 (5.19)

σ̃ = arg min
σ
R(σ) (5.20)

[9]

Given data with labels, one can assess how well the clusters represent the
data classes using the V-Measure score introduced in [19].

Definition 5.5 (V-Measure) The V-Measure is defined as

v :=
2× homogeneity× completeness

homogeneity + completeness
(5.21)

47

5. Analysis

where

homogeneity ∈ [0, 1] scores 1 if each cluster only contains data points of a
single class and

completeness ∈ [0, 1] scores 1 if all data points of a given class are assigned
to the same cluster [15].

The experiment setup is as follows: We choose K = 10, hoping for the data
to be partitioned into the 10 classes of our image datasets. We then take the
Fourier coefficients ŝ of N = 1000 evenly distributed samples and cluster
them in the following trials: We

• cluster all coefficients ŝ = x ∈ Rn.

• cluster all coefficients except the ones belonging to the output layer
ŝ[1: n−nl] = x ∈ Rn−nl .

• cluster all coefficients belonging to exactly one layer x ∈ Rni , i ∈
{1, . . . , l}.

To obtain a bench mark, we perform the same clustering on the signal s and
ŝlap and compare the performances.

By ŝlap we denote the Fourier coefficients of a different graph Fourier trans-
form proposed in [20]. It uses the graph Laplacian matrix Ł as graph
shift and its eigenvectors as Fourier basis. In the appendix A, we shortly
summarize the transform defined in [20]. It makes use of the undirected
Graph representation. In our case this translates to Glap = (V , Elap) with
Elap = {{u, v}| (u, v) ∈ E}.

Evaluation

Clustering the data for various CNNs we received similar results. In Fig-
ure 5.10 we plot the results of Network 4.

First, we observe that the clustering of all activations is at least as precise
as the clustering of all activations excluding the last layer. This is the case
for s, ŝ, and ŝlap. The difference of a data point x ∈ Rn and x′ ∈ Rn−n` is
that the latter does not contain the values associated with the classification
computed by the network.

The clustering of an entire signal s scores lower than the clustering of its last
layer 8. The unsupervised clustering algorithm at hand is unable to assign
the centers such that the data points s ∈ Rn are separated according to the
output class found in the last n` values of s. In other words, the centers
minimizing the mean squared distances to data points s lie somewhere else.

The input layer 1 of ŝ performs equally well as the input layer 1 of s. This
should come as no surprise as we have seen in (5.13) that their values are

48

5.4. Clustering

act

name features inertia homo compl v-meas ARI AMI silhouette

all 9834.00 7616674.47 0.61 0.63 0.62 0.51 0.61 0.11

all except last 9824.00 7612074.44 0.61 0.63 0.62 0.51 0.61 0.10

Input[1, 1, 28, 28] 784.00 487112.34 0.48 0.51 0.36 0.48 0.07

Conv2d(1, 10, kernel_size=(5, 5), stride=(1, 1)) 5760.00 4718263.50 0.43 0.46 0.32 0.43 0.04

MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) 1440.00 1141004.63 0.51 0.54 0.40 0.52 0.07

Conv2d(10, 20, kernel_size=(5, 5), stride=(1, 1)) 1280.00 825543.00 0.68 0.69 0.68 0.59 0.68 0.14

0.00

0.25

0.50

0.75

1.00

All All except last Layer 3 Layer 4 Layer 5 Layer 6 Layer 7 Layer 8

0.620.63

0.340.35

0.620.62

[v = 2 × homogeneity × completeness
homogeneity + completeness]

[d] 9834 9824 1440 1280 320 160 80 10

act-1

name

all

all except last

Input[1, 1, 28, 28]

Conv2d(1, 10, kernel_size=(5, 5), stride=(1, 1))

MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)

Conv2d(10, 20, kernel_size=(5, 5), stride=(1, 1))

1

act

name features inertia homo compl v-meas ARI AMI silhouette

all 9834.00 7616674.47 0.61 0.63 0.51 0.61 0.11

all except last 9824.00 7612074.44 0.61 0.63 0.51 0.61 0.10

Input[1, 1, 28, 28] 784.00 487112.34 0.48 0.51 0.49 0.36 0.48 0.07

Conv2d(1, 10, kernel_size=(5, 5), stride=(1, 1)) 5760.00 4718263.50 0.43 0.46 0.44 0.32 0.43 0.04

MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) 1440.00 1141004.63 0.51 0.54 0.52 0.40 0.52 0.07

Conv2d(10, 20, kernel_size=(5, 5), stride=(1, 1)) 1280.00 825543.00 0.68 0.69 0.68 0.59 0.68 0.14

0.00

0.25

0.50

0.75

1.00

All All except last Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 7 Layer 8

0.43
0.40

0.54

0.93

0.64

0.80

0.46

0.32

0.100.100.10

0.230.23

0.410.40

0.49

0.960.960.96

0.81

0.68

0.52

0.44

0.49

[v = 2 × homogeneity × completeness
homogeneity + completeness]

Signal s

Fourier coefficients ̂s

Laplacian Fourier coefficients ̂s lap

[d] 9834 9824 784 5760 1440 1280 320 160 80 10
[d]

act-1

name

all

all except last

Input[1, 1, 28, 28]

Conv2d(1, 10, kernel_size=(5, 5), stride=(1, 1))

MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)

Conv2d(10, 20, kernel_size=(5, 5), stride=(1, 1))

1

act

name features inertia homo compl v-meas ARI AMI silhouette

all 9834.00 7616674.47 0.61 0.63 0.51 0.61 0.11

all except last 9824.00 7612074.44 0.61 0.63 0.51 0.61 0.10

Input[1, 1, 28, 28] 784.00 487112.34 0.48 0.51 0.49 0.36 0.48 0.07

Conv2d(1, 10, kernel_size=(5, 5), stride=(1, 1)) 5760.00 4718263.50 0.43 0.46 0.44 0.32 0.43 0.04

MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) 1440.00 1141004.63 0.51 0.54 0.52 0.40 0.52 0.07

Conv2d(10, 20, kernel_size=(5, 5), stride=(1, 1)) 1280.00 825543.00 0.68 0.69 0.68 0.59 0.68 0.14

0.00

0.25

0.50

0.75

1.00

All All except last Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 7 Layer 8

[v = 2 × homogeneity × completeness
homogeneity + completeness]

Signal s

Fourier coefficients ̂s

Laplacian Fourier coefficients ̂s lap

[d] 9834 9824 784 5760 1440 1280 320 160 80 10
[d]

act-1

name

all

all except last

Input[1, 1, 28, 28]

Conv2d(1, 10, kernel_size=(5, 5), stride=(1, 1))

MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)

Conv2d(10, 20, kernel_size=(5, 5), stride=(1, 1))

1

Figure 5.10: K-means Clustering on Network 4. K=10, N=1000

equal. On the signal s, the v-measure gradually increases going deeper into
the network. In the last three layers 6-8 the clustering classifies the data as
good as the neural network itself. ŝlap yields varying performances along
the layers but outperforms s in layers 3 and 5. Meanwhile, the v-measure
decreases for Fourier coefficients ŝ . The drop in the performance of ŝ in
linear layers 6-8 is significant. A score of v = 0.1 on 10 classes is not better
than random clustering. To find an explanation for this observation we
investigate the behaviour formally:

Let i be a linear layer. By definition of a linear layer all its neurons have
the exact same set of causes. Therefore, we can apply what we derived in
equation (5.17). (5.17.1) is equal for all neurons v ∈ Vi. Let cs,i denote the
variable (5.17.1). We get:

ŝv = cs,i + sv ∀v ∈ Vi (5.22)

This constant cs,i dependens on layer i and s. For a fixed layer i, cs,i is input-
specific, meaning that a different input image results in a different constant
cs,i. Moreover, the magnitude of cs,i can get large, especially towards deeper
layers. In the linear layers of Network 4 we observed cs,i ≈ 108. The drop in
the performance of the clustering indicates that the additional information
cs,i causes more distortion than separation of the classes in the Euclidean
space. In other words two images of a digit 5 could have very different
values for cs,i. Likewise, the numerical imprecision of the data can distort
the value of cs,i and hence the clustering.

49

5. Analysis

For the remaining section we denote the last n` values of a signal s and ŝ by
x and x̂, respectively.

We just referred to cs,i as additional information for a particular reason. The
predicted class for an image in our CNNs is equal to the class associated
with the maximum value in x. Therefore, the following set of centers per-
form as good in clustering data points x as the networks prediction itself,
and not any better:

σ̃` = (σ1, . . . , σn`
) = (z · e1, . . . , z · en`

) , (5.23)

where ei ∈ Rn denotes the ith eigenvector of the standard basis and z a large
constant.

Assume we center the values x̂ for every of the N samples separately. Then,
the clustering algorithm, operating in the euclidean space, should perform
equally well as for x:

Let ωx̂ denote the mean of one sample x̂.

ωx̂ :=
∑n`

i=1 x̂i

n`

(5.22)
=

∑n`
i=1 (cs,` + xi)

n`
= cs,` +

∑n`
i=1 xi

n`
= cs,` + ωx (5.24)

Centering this sample yields:

x̂−ωx̂ = (cs,` + x)− (cs,` + ωx) = x−ωx (5.25)

By definition of ωx it is not larger than any xi with i ∈ {1, . . . , n`}. We con-
clude that centers σ̃` perform as good on the sample-wise centered Fourier
coefficients x̂ as on x.

Likewise, we can argue that a clustering algorithm, that clusters by differ-
ence in the values x̂ within one sample should yield the same performance
as x. Similarly, this holds for a difference in channels if x is a convolutional
layer. We studied the justification for this statement in section 5.3.2, in par-
ticular, equation (5.18) and Figure 5.9.

50

Chapter 6

Conclusion

In relation to signal processing on classical domains, graphs are often re-
ferred to as irregular data-domains [20]. In CSP, neural networks exhibit
highly repetitive patterns. The, yet ’irregular data-domain’, possesses many
recurring structures in the causal relationships between the layered neurons.

Numerical inaccuracies have complicated the analysis of the data. The trans-
form matrices of CNNs are ill-conditioned. By normalizing the Fourier trans-
form we were able to lift the numerical precision. Nevertheless, a small dis-
turbance in the activations still leads to large perturbations of the Fourier
coefficients.

We suspect that no particularly pleasant structures such as sparsity, a small
group of distinct coefficients, or other forms of regularity can be found in
the activation patterns by CSP. In the event that such patterns do exists they
are difficult to detect by the experiments conducted since the sensitivity of
the Fourier coefficients to a small noise in the activations is substantial. We
might require a different approach to uncover them.

51

Chapter 7

Acknowledgments

I thank Prof. Püschel and Chris Wendler for proposing the topic of the
Bachelor thesis and supervising my work.

I thank Chris Wendler for numerous discussions on several aspects of the
topic.

I thank Tommaso Pegolotti for discussions on numerical issues and provid-
ing his fpft-library [16].

I thank Vinitra Swamy for comments on earlier versions of the manuscript.

I thank Vincent Schwarz for shearing the cat on page 13.

53

Appendix A

Laplacian Graph Fourier Transform

We give a short summery of the Fourier transform on graphs elaborated in
[20]. First we define the graph spectral representation [20]. Its eigenvectors
provide the Fourier basis for the Fourier transform.

Definition A.1 (Non-Normalized Graph Laplacian) The non-normalized Graph
Laplacian Ł ∈ Rn×n is defined as

Ł := D−W (A.1)

where D ∈ Nn×n is the diagonal degree matrix of an undirected graph and
W ∈ Rn×n its symmetric weighted adjacency matrix. In our directed graph
representation this corresponds to

D(v,v) := deg−(v) + deg+(v) (A.2)

W(u,v) :=

{
1 if (u, v) ∈ E or (v, u) ∈ E ,
0 otherwise

(A.3)

for all u, v ∈ V .

Since Ł is a real symmetric matrix, it has a complete set of n orthonormal
eigenvectors. Let U ∈ Rn×n be the matrix containing the eigenvectors as
columns, i.e

Ł = UΛU−1 orth.
= UΛUT (A.4)

Definition A.2 (Fourier transform) The Laplacian Fourier transform is now
defined as as the expansion of a signal s in terms of UT

ŝlap := UTs

and its corresponding inverse Laplacian Fourier transform as

s := Uŝlap

55

A. Laplacian Graph Fourier Transform

0

5

10

15

20

25

20 15 10 5 0 5 10 15 20

Layer 1

0

5

10

15

20

25

30 20 10 0 10 20 30

Layer 1

0

5

10

15

20

25

30 20 10 0 10 20 30

Layer 1

0

10

20

0

10

20

0

10

20

10 5 0 5 10

Layer 2

0

10

20

0

10

20

0

10

20

10 5 0 5 10

Layer 2

0

10

20

0

10

20

0

10

20

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0

Layer 2

0

5

10

0

5

10

0

5

10

4 3 2 1 0 1 2 3 4

Layer 3

0

5

10

0

5

10

0

5

10

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0

Layer 3

0

5

10

0

5

10

0

5

10

6 4 2 0 2 4 6

Layer 3

0

5

0

5

0

5

0

5

0

5

15 10 5 0 5 10 15

Layer 4

0

5

0

5

0

5

0

5

0

5

15 10 5 0 5 10 15

Layer 4

0

5

0

5

0

5

0

5

0

5

15 10 5 0 5 10 15

Layer 4

0

2

0

2

0

2

0

2

0

2

10 5 0 5 10

Layer 5

0

2

0

2

0

2

0

2

0

2

20 15 10 5 0 5 10 15 20

Layer 5

0

2

0

2

0

2

0

2

0

2

20 10 0 10 20

Layer 5

0.5
0.0
0.5

30 20 10 0 10 20 30

Layer 6

0.5
0.0
0.5

40 20 0 20 40

Layer 6

0.5
0.0
0.5

40 20 0 20 40

Layer 6

Figure A.1: Fourier signals ŝlap corresponding to signals s in Figure 5.5

56

Appendix B

Network Specifications

57

B. Network Specifications

Network Dataset Nodes Edges Layers

Layer Description

1 MNIST 3,098 80,640 3
1
2
3

Input
Conv2d(1, 4, kernel size=(5, 5), stride=(1, 1))
Linear(in features=2304, out features=10, bias=True)

2 MNIST 8,506 237,600 4

1
2
3
4

Input
Conv2d(1, 8, kernel size=(3, 3), stride=(1, 1))
Conv2d(8, 4, kernel size=(3, 3), stride=(1, 1))
Linear(in features=2304, out features=10, bias=True)

3 MNIST 9,594 550,400 6

1
2
3
4
5
6

Input
Conv2d(1, 10, kernel size=(5, 5), stride=(1, 1))
MaxPool2d(kernel size=2, stride=2, padding=0, dilation=1, ceil mode=False)
Conv2d(10, 20, kernel size=(5, 5), stride=(1, 1))
MaxPool2d(kernel size=2, stride=2, padding=0, dilation=1, ceil mode=False)
Linear(in features=320, out features=10, bias=True)

4 MNIST 9,834 612,000 8

1
2
3
4
5
6
7
8

Input
Conv2d(1, 10, kernel size=(5, 5), stride=(1, 1))
MaxPool2d(kernel size=2, stride=2, padding=0, dilation=1, ceil mode=False)
Conv2d(10, 20, kernel size=(5, 5), stride=(1, 1))
MaxPool2d(kernel size=2, stride=2, padding=0, dilation=1, ceil mode=False)
Linear(in features=320, out features=160, bias=True)
Linear(in features=160, out features=80, bias=True)
Linear(in features=80, out features=10, bias=True)

5 CIFAR 11,166 705,544 7

1
2
3
4
5
6
7

Input
Conv2d(3, 6, kernel size=(5, 5), stride=(1, 1))
MaxPool2d(kernel size=2, stride=2, padding=0, dilation=1, ceil mode=False)
Conv2d(6, 16, kernel size=(5, 5), stride=(1, 1))
Linear(in features=400, out features=120, bias=True)
Linear(in features=120, out features=84, bias=True)
Linear(in features=84, out features=10, bias=True)

6 FashionMNIST 23,338 1,922,432 8

1
2
3
4
5
6
7
8

Input
Conv2d(1, 16, kernel size=(3, 3), stride=(1, 1))
AvgPool2d(kernel size=2, stride=2, padding=0)
Conv2d(16, 32, kernel size=(3, 3), stride=(1, 1))
Conv2d(32, 32, kernel size=(3, 3), stride=(1, 1), padding=(1, 1))
MaxPool2d(kernel size=2, stride=2, padding=1, dilation=1, ceil mode=False)
Linear(in features=1152, out features=128, bias=True)
Linear(in features=128, out features=10, bias=True)

7 FashionMNIST 30,282 2,579,264 8

1
2
3
4
5
6
7
8

Input
Conv2d(1, 16, kernel size=(3, 3), stride=(1, 1))
Conv2d(16, 16, kernel size=(3, 3), stride=(1, 1), padding=(1, 1))
MaxPool2d(kernel size=2, stride=2, padding=0, dilation=1, ceil mode=False)
Conv2d(16, 32, kernel size=(3, 3), stride=(1, 1))
MaxPool2d(kernel size=2, stride=2, padding=1, dilation=1, ceil mode=False)
Linear(in features=1152, out features=128, bias=True)
Linear(in features=128, out features=10, bias=True)

Table B.1: Network Specifications

58

Bibliography

[1] Amina Adadi and Mohammed Berrada. Peeking inside the black-
box: A survey on explainable artificial intelligence (xai). IEEE Access,
6:52138–52160, 2018.

[2] Muhammad Aurangzeb Ahmad, Carly Eckert, and Ankur Teredesai.
Interpretable machine learning in healthcare. In Proceedings of the 2018
ACM International Conference on Bioinformatics, Computational Biology,
and Health Informatics, BCB ’18, page 559–560, New York, NY, USA, 2018.
Association for Computing Machinery.

[3] Anonymous. A causal shift and fourier transform on directed acyclic
graphs. Submitted for publication.

[4] Katja Grace, John Salvatier, Allan Dafoe, Baobao Zhang, and Owain
Evans. When will ai exceed human performance? evidence from ai
experts. Journal of Artificial Intelligence Research, 62:729–754, 2018.

[5] Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. Exploring net-
work structure, dynamics, and function using networkx. In Gaël Varo-
quaux, Travis Vaught, and Jarrod Millman, editors, Proceedings of the 7th
Python in Science Conference, pages 11 – 15, Pasadena, CA USA, 2008.

[6] Ralf Hiptmair. Numerical methods for computational science and engi-
neering. ETH Lecture Notes 401-0663-00L Numerical Methods for CSE,
Autumn 2019.

[7] IEEE Signal Processing Society contributors. Ieee signal processing so-
ciety, 2021. [Online; accessed 24-September-2021].

[8] Jean-Marie John-Mathews. Some critical and ethical perspectives on the
empirical turn of ai interpretability. Technological Forecasting and Social
Change, 174:121209, 2022.

59

Bibliography

[9] Andreas Krause. Introduction to machine learning. ETH Lecture Slides
252-0220-00L Introduction to Machine Learning, Spring 2020.

[10] Mengchen Liu, Jiaxin Shi, Zhen Li, Chongxuan Li, Jun Zhu, and Shixia
Liu. Towards better analysis of deep convolutional neural networks.
IEEE transactions on visualization and computer graphics, 23(1):91–100,
2016.

[11] Valerio Mante, Matthew Cook, Benjamin Grewe, Giacomo Indiveri,
Daniel Kiper, and Wolfger von der Behrens. Introduction to neuroin-
formatics. ETH Lecture Slides 227-1037-00 S Introduction to Neuroin-
formatics, Autumn 2020.

[12] Grégoire Montavon, Wojciech Samek, and Klaus-Robert Müller. Meth-
ods for interpreting and understanding deep neural networks. Digital
Signal Processing, 73:1–15, 2018.

[13] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-
bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,
Luca Antiga, Alban Desmaison, Andreas Köpf, Edward Yang, Zach
DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imper-
ative style, high-performance deep learning library, 2019.

[14] Judea Pearl. Causality. Cambridge university press, 2009.

[15] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011.

[16] Tommaso Pegolotti. Fast moebius and zeta transforms. ETH Master
Thesis, 2021.

[17] Markus Puschel, Bastian Seifert, and Chris Wendler. Discrete signal
processing on meet/join lattices. IEEE Transactions on Signal Processing,
2021.

[18] Markus Puschel, Peter Widmayer, and David Steurer. Algorithmen und
datenstrukturen. ETH Lecture Script 252-0026-00L Algorithmen und
Datenstrukturen, Autumn 2017.

[19] Andrew Rosenberg and Julia Hirschberg. V-measure: A conditional
entropy-based external cluster evaluation measure. In Proceedings of the
2007 joint conference on empirical methods in natural language processing and

60

Bibliography

computational natural language learning (EMNLP-CoNLL), pages 410–420,
2007.

[20] David I Shuman, Sunil K Narang, Pascal Frossard, Antonio Ortega,
and Pierre Vandergheynst. The emerging field of signal processing
on graphs: Extending high-dimensional data analysis to networks and
other irregular domains. IEEE signal processing magazine, 30(3):83–98,
2013.

[21] Karen Simonyan and Andrew Zisserman. Very deep convolutional net-
works for large-scale image recognition. arXiv preprint arXiv:1409.1556,
2014.

[22] Ashu MG Solo. Multidimensional matrix mathematics: Notation, rep-
resentation, and simplification, part 1 of 6. In Proceedings of the world
congress on engineering, volume 3, pages 1824–1828, 2010.

[23] Angelika Steger and Emo Welzl. Algorithmen und wahrscheinlichkeit.
ETH Lecture Script 252-0030-00L Algorithmen und Wahrscheinlichkeit,
Spring 2018.

[24] Longwei Wang and Peijie Chen. Neurons activation visualization and
information theoretic analysis. arXiv preprint arXiv:1905.08618, 2019.

[25] Chris Wendler, Dan Alistarh, and Markus Püschel. Powerset convolu-
tional neural networks. arXiv preprint arXiv:1909.02253, 2019.

[26] Jason Yosinski, Jeff Clune, Anh Nguyen, Thomas Fuchs, and Hod Lip-
son. Understanding neural networks through deep visualization, 2015.

61

Declaration of originality

The signed declaration of originality is a component of every semester paper, Bachelor’s thesis,
Master’s thesis and any other degree paper undertaken during the course of studies, including the
respective electronic versions.

Lecturers may also require a declaration of originality for other written papers compiled for their
courses.
__

I hereby confirm that I am the sole author of the written work here enclosed and that I have compiled it
in my own words. Parts excepted are corrections of form and content by the supervisor.

Title of work (in block letters):

Authored by (in block letters):
For papers written by groups the names of all authors are required.

Name(s): First name(s):

With my signature I confirm that
− I have committed none of the forms of plagiarism described in the ‘Citation etiquette’ information

sheet.
− I have documented all methods, data and processes truthfully.
− I have not manipulated any data.
− I have mentioned all persons who were significant facilitators of the work.

I am aware that the work may be screened electronically for plagiarism.

Place, date Signature(s)

 For papers written by groups the names of all authors are

required. Their signatures collectively guarantee the entire
content of the written paper.

	Contents
	Introduction
	Background and Notation
	Causal Signal Processing
	Poset-Domain
	Fourier-Domain

	Neural Networks
	Neural Networks are Computational Graphs
	Deep Neural Networks

	Causal Signal Processing on Neural Networks
	Computational Graph as Poset
	Activation Pattern as Signal

	Implementation
	Extracting the Computational Graph of a Neural Network
	Extracting the Vertices
	Extracting the Edges

	Computing the inverse Causal Fourier Transform of a DAG
	Computing the Causal Fourier Transform of a DAG
	Computing the Fourier Coefficients
	Computational Complexities

	Analysis
	Numerical Analysis
	Transform Matrices F and F-1
	Inverse Fourier Transform Matrix F-1
	Fourier Transform Matrix F

	Signals s and Fourier Coefficients s"0362s
	Signal s
	Fourier Coefficients s"0362s

	Clustering

	Conclusion
	Acknowledgments
	Laplacian Graph Fourier Transform
	Network Specifications
	Bibliography

