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Abstract

A recent line of work developed a family of algorithms for learning
set functions efficiently under certain conditions. These algorithms
exploit the sparsity of set functions in non-orthogonal Fourier domains.
We contribute in two ways to this work. First, we introduce a new
non-orthogonal Fourier transform and the associated extension to the
mentioned algorithms. The new transform introduces weights along
the Fourier basis vectors resulting in a better interpretable Fourier basis
when we regard the Fourier domain as a Kernel space. The new result-
ing transform matrix also has a considerably lower condition number
compared to its predecessors. Second, we provide implementations of
six different types of set functions: Sensor placement tasks, preference
functions for measuring contamination in water networks, preference
elicitation in auctions, fitness functions, random forest regressors on
binary input data and compiler flag optimization tasks, and use them
to evaluate our novel algorithm.
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Chapter 1

Introduction

Numerous problems in machine learning on discrete domains involve learn-
ing so called set functions [1]. Set functions are mappings from subsets to
the real numbers and appear naturally in many applications. For example in
sensor placement tasks, where one wants to find most informative subset of
sensors [1], or as the graph cut function, which associates with every subset
of nodes in a weighted graph the sum of the edge weights that need to be
cut to separate them [2], in recommender systems a set function can quantify
the utility of every subset of items [3], in auction design every bidder can be
modeled as a set function [4], and as fitness functions, which quantify the
positive or negative effects of mutations on an organism [5].

But working with these functions is challenging, because of their exponential
nature. Hence to make things tractable its crucial to exploit any structure
available. One key property for efficiently learning set functions is sparsity
in the Fourier domain [1, 6, 7]. A recent line of work, aiming at porting core
signal processing theory to the discrete set domain, derived multiple Fourier
transforms for set functions [8]. Applying those transforms on some relevant
classes of set functions has been shown to result in a very sparse Fourier
spectrum. Furthermore algorithms have been developed that compute these
transforms efficiently, under certain conditions on the Fourier coefficients
[1, 9]. Still these transforms have issues, one of the most notable ones is
their really high condition number. Furthermore it is still of great interest to
discover new classes of set functions, which are sparse in the Fourier domains
from [8].

Contributions. Our contributions from this work are twofold. First we
present an extension to the algorithms from [1] based on a novel Fourier
transform. The new transform introduces weights along the Fourier basis
vectors. When interpreting the Fourier basis as the kernel feature space for
discrete sets, the introduction of weights allows for the definition of a much
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1. Introduction

more interpretable similarity measure between the embedded samples. The
resulting weighted Fourier basis has a considerably lower condition number
compared to previous transforms, which could possibly help in reducing the
susceptibility to noise. The second contribution is the testing of the newly
introduced extension, and other algorithms from [1], on different classes of
set functions. Some of these set functions contain noise, which is a problem,
as due to the high condition number this could negatively effect the sparsity
in the Fourier domains. Of the in total six function classes three were already
evaluated in [1]: Sensor placement tasks, preference functions and auction
elicitations. The other three classes are newly implemented and evaluated in
this work: fitness functions, random forest regressors with binary input data
and size of compiled programs with different flag activations.

In chapter 2 we will present the background knowledge necessary for under-
standing this work and in which context it was introduced. Then in chapter
3 we present our new Fourier basis and give a detailed description of the
corresponding sparse set function Fourier transform (SSFT) derived from [1].
In chapter 4 we will then evaluate the sparsity of multiple transforms on the
different classes of set functions to asses their practical relevance.
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Chapter 2

Background

In this chapter we present various topics related to signal processing for dis-
crete sets, machine learning and linear algebra necessary for understanding
this work. First, we will briefly describe what a set function is, which is
central for us, since in this work we talk about learning set functions. Then
we will present two of the set function Fourier transforms derived from
discrete-set signal processing theory [8]. After that we will explain what
Fourier sparsity is and how it can help us to represent a set function in a com-
pact manner. Finally, in the last two sections we will introduce the modified
Tanimoto kernel and the definition and meaning of the condition number of
a matrix. These last two concepts are crucial to derive and motivate the new
Fourier transform we introduce in this work.

2.1 Discrete Set Function Fourier Transforms

In this section we present a brief, simplified derivation of two of the Fourier
transforms for set functions associated with discrete-set signal processing
(SP) theory [8]. Discrete-set SP ports core SP concepts, such as convolutions,
Fourier transforms and shifts, to the discrete-set index domain. In contrast
to discrete-time signal processing where one works with signals indexed by
time, in discrete-set SP we work with set function signals indexed by subsets
of a discrete set.

Definition 2.1 (Set Function) Let N = {x1, . . . , xn} be a set of size n and let 2N

be the power set of N, then a set function s is a function of the form

s : 2N → R; A 7→ s(A) (2.1)

and s can be identified with the signal vector

s = (s(A))A⊆N (2.2)
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2. Background

of length 2n.

Note that to define the signal vector s = (s(A))A⊆N we need to choose an
order on the subsets. In discrete-time SP signals are ordered in ascending
time, as there is no clear ascending order for subsets we need an alternative.
As in [8], we choose the lexicographic ordering on the Cartesian product. For
example, n = 3 yields the following ordering:

{}, {x1}, {x2}, {x1, x2}, {x3}, {x1, x3}, {x2, x3}, {x1, x2, x3}. (2.3)

Discrete-set SP is derived from algebraic signal processing theory (ASP)
[10, 11]. The aim of ASP is to enable the use of SP techniques to solve tasks
such as coding, estimation, detection, compression, filtering and others, in
other index domains other then the classical space or time domains. The
axiomatic concept in ASP from which all others are derived is the shift
operation.

Discrete-set Shifts. Recall the notion of shifts in the discrete-time index
domain: Given a signal (t(i))i∈N indexed by time, a shift by x results in a
signal (t′(i))i∈N = (t(i− x))i∈N. Similarly one can define a shift for signals
indexed by subsets. Discrete-set SP defines multiple notions of shift in the
set index domain. We now present two such shifts from [8] obtained from
set union and difference operations.

Definition 2.2 (Shift 3) Let (s(A))A⊆N be a set function signal defined on the
powerset of N and xi ∈ N. Then the signal s(3) obtained by applying shift 3 on s is
of the form

s(3) = (s(3)(A))A⊆N = (s(A \ {xi}))A⊆N (2.4)

As one can see shift 3 results in a naturally delayed signal. Similarly we
define shift 4.

Definition 2.3 (Shift 4) Let (s(A))A⊆N be a set function signal defined on the
powerset of N and xi ∈ N. Then the signal s(4) obtained by applying shift 4 on s is
of the form

s(4) = (s(4)(A))A⊆N = (s(A ∪ {xi}))A⊆N (2.5)

Shift 4 results in a perfectly advanced signal. Note that shifts 3 and 4 have a
corresponding shift matrix [8], which when multiplied with the signal vector
results in the shifted signal vector. From shift 3 and shift 4 [8] then derives two
different signal models, which we denote as models 3 and 4. In the following
section we present the two Fourier transforms associated with models 3 and 4.
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2.1. Discrete Set Function Fourier Transforms

Fourier Transforms. In this section we present the Fourier transforms asso-
ciated with the shifts 3 and 4.
A proper notion of Fourier transform jointly diagonalizes all filter matrices
derived from the shift [8]. These filter matrices and their construction are
presented in detail in [8] and are omitted here. To note is that filters are
shift equivariant linear mappings and that to diagonalize the filter matrices
it is sufficient to diagonalize the shift matrices. The matrices F (3) and F (4)

defined below diagonalize the matrices of shift 3 and shift 4 respectively and
are thus Fourier transform matrices.

Definition 2.4 (DSFT3) The Fourier transform derived from shift 3 of a signal
s = (s(A))A⊆N , with |N| = n, is defined as

ŝ(3) = F (3)s (2.6)

with F (3)
BA = (−1)|A|−|B|iA⊆B and F (3)−1

AB = iB⊆A, resulting in Fourier and inverse
Fourier transform matrices of the form

F (3) =

[
1 0
−1 1

]⊗ n

and F (3)−1 =

[
1 0
1 1

]⊗ n

(2.7)

where
⊗

n denotes the n-fold Kronecker product.

Note that the DSFT3 defined here is not the same as introduced in [8],
but the Fourier basis vectors only differ by a scalar product and thus both
versions span the same space. The formula for computing the coefficient
ŝ(3)(B) at a particular frequency B ⊆ N is then:

ŝ(3)(B) = ∑
A⊆B

(−1)|A|−|B|s(A) (2.8)

and the formula to evaluate s(A) given the Fourier spectrum is then:

s(A) = ∑
B⊆A

ŝ(3)(B). (2.9)

Definition 2.5 (DSFT4) The Fourier transform derived from shift 4 of a signal
s = (s(A))A⊆N , with |N| = n, is defined as

ŝ(4) = F (4)s (2.10)

with F (4)
BA = (−1)A∩BiA∪B=N and F (4)−1

BA = iA∩B=∅, resulting in Fourier and
inverse Fourier transform matrices of the form

F (4) =

[
0 1
1 −1

]⊗ n

and F (4)−1 =

[
1 1
1 0

]⊗ n

(2.11)

where
⊗

n denotes the n-fold Kronecker product.
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2. Background

The formula for computing the coefficient ŝ(4)(B) of a particular frequency
B ⊆ N is then:

ŝ(4)(B) = ∑
A⊆N, A∪B=N

(−1)|A∩B|s(A) (2.12)

and the formula to evaluate s(A) given the Fourier spectrum is then:

s(A) = ∑
B⊆N,A∩B=∅

ŝ(4)(B) (2.13)

As mentioned discrete-set SP associates the DSFT3 and DSFT4 with the
signal models 3 and 4. Hence sometimes we will be referring to them as
Fourier transforms w.r.t model 3 and 4 respectively. Note that equivalent
forms of these two transforms were also derived when studying specific
applications [5, 12, 13]. For example the Taylor series for fitness functions in
[5] is equal to the DSFT3. Also in [12] the derived transform, introduced to
compute marginal posterior probabilities in Bayesian networks, is equal to
the DSFT4.

Fourier Sparsity. In this short section we introduce the concept of (Fourier)
sparsity.

Definition 2.6 A set function s is called k-sparse if

supp(ŝ) = {B : ŝ(B) ̸= 0} = {B1, ..., Bk}, (2.14)

where ŝ is the Fourier spectrum of s.

We call the set of frequencies associated with non-zero coefficients supp(ŝ) =
{B : ŝ(B) ̸= 0} the support of s. Exactly learning a sparse set function is
equivalent to finding its support and the values of the corresponding coeffi-
cients. We can then evaluate s at every index in time linear in k. Thus in the
case of k ≪ n knowing the support of s and its corresponding coefficients
is useful information, as we do not need an explicit look up table with 2n

entries or whatever costly way we had to evaluate s. For example, querying
set functions involving hyperparameter or compiler flag optimizations can
be very costly.

Sparse Set Function Transforms. Even in the case of k≪ n a key challenge
is to determine the support of s and its coefficients efficiently. By simply
performing the naive Fourier transform via matrix multiplication we would
still evaluate the whole set function and perform a prohibitive number of
operations. Hence more efficient methods are needed to perform Fourier
transforms for set functions with a sparse spectrum.
There are various different methodologies and algorithms for solving this
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2.2. Modified Tanimoto Kernel

task, see [1] for a more in depth discussion of related work. In our case we
apply the algorithms presented in [1], which we collectively denote as SSFT
algorithms. For our purposes we need the algorithms performing the Fourier
transforms 3 and 4. We will denote these algorithms as SSFT3 and SSFT4
respectively. Note that all SSFT algorithms have the same query and time
complexity.

Lemma 2.7 (SSFT queries and complexity) [1, Theorems 10 and 11] Under
the assumption that no cancellations between the Fourier coefficients occur, the
algorithmic complexity of SSFT is O(nk2) and it requires O(nk− k log k) queries
for k-sparse set functions.

Note that the time and query complexity depend directly on the sparsity of
the set function, i.e., for SSFT to work it is expected that k≪ 2n.

Weighted Fourier Basis. Consider a ground set N and two subsets A, B ⊆ N.
It turns out, that when introducing weights of the form wBA to each Fourier
basis entry (F )−1

AB, where F−1 is a discrete-set Fourier basis, we obtain again
a new Fourier basis [14]. We will exploit this fact in the next chapter by
introducing a new Fourier basis with weights of this form.
Later we will motivate the introduction of the weights. For that reason in the
following two sections we present the modified Tanimoto kernels and the
notion of condition number, which will be useful to motivate new Fourier
bases.

2.2 Modified Tanimoto Kernel

In this section we introduce so called (modified) Tanimoto kernel [15], which
encodes the Jaccard similarity between two sets. But first we give a brief
introduction to kernel methods.

Kernel Methods. Kernel methods are often applied in machine learning for
enabling the use of linear methods for solving non-linear tasks. The dataset
is embedded in some higher dimensional space using an embedding function
Φ : Rd −→ Rk, where our original samples are in Rd and k > d. The idea is
that while the task is not solvable with linear methods in Rd, it will be in Rk.
With every embedding Φ there is an associated similarity measure, or kernel
function, κ.

Definition 2.8 (Similarity Measure) Given an embedding function Φ : Rd −→ Rk,
where k > d, a similarity measure κ is a function

κ : Rd ×Rd −→ R, κ(x, y) 7→
k

∑
i=1

Φ(x)iΦ(y)i . (2.15)
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2. Background

Then the task is solved in using the similarity measure and without actually
calculating the embedding, i.e, by finding a closed form for κ.

Similarity between Sets. A measure for representing the similarity between
sets is the Jaccard similarity:

J(A1, A2) =
|A1 ∩ A2|
|A1 ∪ A2|

. (2.16)

Two sets are the more similar the more elements they have in common,
normalized by the number of elements in both sets. This normalization is
introduced to compensate for varying set sizes.
Motivated by this intuitive measure, we can define useful similarity measures
based on the Jaccard similarity, such as the generalized Tanimoto kernel [15].
In this work we use a modified version of the Tanimoto Kernel

Definition 2.9 (Modified Tanimoto kernel) The modified Tanimoto kernel func-
tion κ encodes the similarity between two sets A1, A2 as

κ(A1, A2) =
2|A1∩A2|

2|A1∪A2|
. (2.17)

2.3 Condition Number

Let A be a matrix in Rn×n and x and b two vectors in Rn. Consider the linear
equation Ax = b. The condition number cond is a value associated with the
matrix A.

Definition 2.10 (Condition Number) Let A ∈ Rn×n, the condition number of
A is then defined as

cond(A) = ∥A∥ ∥A−1∥. (2.18)

cond(A) quantifies how sensitive the solution x is to perturbations in b. To
see this consider the following linear system:

A(x + δx) = b + δb, (2.19)

where δb, δx are the absolute errors in b and x respectively. We then have the
following inequality:

∥δx∥
∥x∥ ≤ cond(A)

∥δb∥
∥b∥ . (2.20)

One can see that given a relative error b, the relative error in the solution
can be up to cond(A) times that error. But also note that inequality (2.20) is
only an upper-bound, i.e, the error is not bound to propagate with a factor
of cond(A) to the solution.
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Chapter 3

Weighted Fourier Transform for Set
Functions

In this chapter we introduce a new Fourier transform. The transform we
present, denoted as WDSFT3, is a weighted version of the DSFT3 transform
shown in the background section. We will start by motivating the introduction
of weights and then culminate in the specific weights. With those weights
we will define the WDSFT3 transform. Finally we will present its associated
SSFT algorithm, denoted as SSFTW3, for efficiently learning set functions
that are sparse in the Fourier domain of WDSFT3.

3.1 Weighted DSFT3

In this section we first motivate the introduction of weights along the Fourier
basis vectors of the inverse DSFT3, then we define the new Fourier transform
WDSFT3.

Fourier kernel space To understand the motivation behind the weighted
Fourier Transform we interpret (some) Fourier basis F−1 as a kernel space
for subsets. Recall from the background section the embedding function Φ,
we then have the feature space embedding

Φ : 2N −→ R2n
; A 7→ (F−1

AB)B⊆N (3.1)

Recall also that for every embedding there is an associated similarity measure
κ. Consider F−1 = F (3)−1, for the embedding shown above the resulting
similarity between two subsets A1, A2 is then

κ(A1, A2) = 2|A1∩A2|. (3.2)

A useful kernel used for dealing with powersets is the Tanimoto kernel [14]
presented in the background section. A kernel function very similar to it,
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3. Weighted Fourier Transform for Set Functions

is the modified Tanimoto kernel we defined earlier. The Tanimoto kernel
represents clearly a better similarity measure between subsets compared the
one from equation (3.2). Hence we wish for a Fourier basis which results
in such a similarity measure. Indeed there is a matrix F (W3)−1 where the
resulting similarity measure is equal to the modified Tanimoto kernel [14].

Lemma 3.1 Consider wBA =
√

3
|B|

2−|A|. For

F (W3)−1
AB = (wBA)iB⊆A (3.3)

we have that

κ(A1, A2) =
2|A1∩A2|

2|A1∩A2|
(3.4)

Proof The proof for this lemma was provided to us by the authors of [14]:

κ(A1, A2) = ∑
B⊆A1∩A2

wBA1 wBA2

= ∑
B⊆A1∩A2

√
3
|B|

2−|A1|
√

3
|B|

2−|A2|

= 2−(|A1|+|A2|) ∑
B⊆A1∩A2

3|B|

= 2−(|A1|+|A2|)
|A1∩A2|

∑
|B|=0

(
|A1 ∩ A2|
|B|

)
3|B|

= 2−(|A1∪A2|+|A1∩A2|)(3 + 1)|A1∩A2|

=
2|A1∩A2|

2|A1∪A2|
□

Note that the structure F (W3)−1 is equal to the one structure the Fourier basis
of DSFT3, the only difference is the, always non-zero, weight wBA.

Condition number of the weighted version. As we saw in the background
section another property one wishes from a matrix is a low condition number.
The following lemma states the condition number of F (W3). Note that
cond(F (W3)) = cond(F (W3)−1).

Lemma 3.2 The matrix F (W3) has a condition number of cond(F (W3)) =
√

3
n
,

where 2n is the number of rows and columns of F (W3).

Proof First recall the formula for the condition number cond(A) of an arbi-
trary matrix A

κ(A) = ∥A∥2 · ∥A−1∥2 (3.5)
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3.1. Weighted DSFT3

We have that ∥A∥2 =
√

maxλ∈σ(AT A) λ. Where the value of the maximum

eigenvalue λmax can be easily computed using the identities U
⊗

nT
= UT

⊗
n,

(U
⊗

U′)(V
⊗

V ′) = (UV
⊗

U′V ′) and σ(U
⊗

V) = {µν | µ ∈ σ(U) ∧ ν ∈
σ(V)}. We have (

1 0
− 1√

3
2√
3

)T (
1 0

− 1√
3

2√
3

)
=

(
1 − 1√

3
− 1√

3
5
3

)
(3.6)

which has eigenvalues of 2 and 2
3 . With the same steps we see that F (W3)−1

has eigenvalues 3
2 and 1

2 . Then we have
√

3 =
√

3
2

√
2. □

This is a considerable improvement over the Fourier basis of the DSFT3.
Analogously as above it can be shown that F (3) has a condition number of(

3+
√

5
2

)n
. To get a feeling of the improvement, take for example n = 10. Then

κ(F (3)) ≈ 15127 and κ(F (W3)) = 243.
With the better interpretable Kernel similarity measure and the lower condi-
tion number we now have a ”better” non-orthogonal Fourier basis.

WDSFT3. As we saw there are various advantages in using a weighted
Fourier basis. We now define the new weighted Fourier transform.

Definition 3.3 (WDSFT3) The Fourier transform derived from introducing weights
on F (3) of a signal s = (s(A))A⊆N , with |N| = n, in the discrete-set index domain
is defined as

ŝ(W3) = F (W3)s (3.7)

with F (W3)
BA = (−wBA)

|B|−|A|iA⊆B and F (W3)−1
AB = wBAiB⊆A, resulting in Fourier

and inverse Fourier transform matrix of the form

F (W3) =

[
1 0

− 1√
3

2√
3

]⊗ n

and F (W3)−1 =

[
1 0
1
2

√
3

2

]⊗ n

(3.8)

where
⊗

n denotes the n-fold Kronecker product.

The resulting Fourier and inverse Fourier transforms are then:

ŝ(W3)(B) = ∑
A⊆B

(−1)|A|−|B|
1

wBA
· s(A) (3.9)

s(A) = ∑
B⊆A

wBA · ŝ(W3)(B) (3.10)

Note that for this Fourier transform, as for the previous two, there is an
associated signal model. We denote this model as W3. Now that we have
our Fourier transform we introduce the corresponding extension to the SSFT
algorithms.

11



3. Weighted Fourier Transform for Set Functions

3.2 SSFTW3 Algorithm

Recall from the background section the definition of k-sparsity for set func-
tions: A function is sparse if it has k frequency components, i.e., if it has k
non-zero Fourier coefficients. Also recall that the aim of all SSFT algorithms
is to calculate the support and Fourier coefficients of a sparse set function
s : 2N −→ R with groundset N = {x1, ..., xn} efficiently w.r.t. some Fourier
transform.
In this section we will give a rough outline of how the SSFTW3 algorithm
works and present the most important ideas and results. As all SSFT algo-
rithms are identical in their structure, we will first present a rough outline of
how they operate. Then from this skeleton algorithm we will instantiate the
SSFTW3 algorithm. Note that all fundamental lemmas for implementing
the SSFT3 algorithm were already presented in [1], we only need to do some
minor adjustments as we have a weighted version of the basis of DSFT3.

Algorithm outline. Algorithm 1 presents the skeleton of a SSFT algorithm.
Let F be the transform matrix of some set function Fourier transform and
si : Mi −→ R a set function, where Mi = {x1, . . . , xi} ⊆ N. We call si is a
restriction of s.
In short, the algorithm works the following way: It iterates once from 1 to n.
At iteration i it constructs the support of si from the support of si−1 (lines 6,7),
we discuss the details later. Then by querying s and solving a linear system
of equations it determines the Fourier coefficients of si,i.e., it reconstructs
ŝi (lines 9,10). Finally it stores the support of si for the next iteration (lines
11,12). At the n-th iteration we return ŝn = ŝ. Note that each si is defined
on Mi, thus at every iteration we add an element of N to the domain of the
restriction.
There are two main issues which have to be resolved to transform the skeleton
algorithm to the SSFTW3 algorithm:

1. Let F−1
AB be the submatrix in Algorithm 1 (line 10) of F−1 obtained by

selecting the rows indexed by A and columns indexed by B. Let B be
the support of s. To reconstruct s we have to determine A such that
F−1 is invertible.

2. We have to define the sequence of restrictions of s, i.e., we have to
define (s0, . . . , sn). As one can see from the pseudocode at line 11 in
algorithm 1, for later iterations we only consider the frequencies in the
support of a restriction. Hence it must hold that, if a frequency is not
in the support of si then it, or a superset of it, isn’t in the support of
si+1. In other words it must hold that

ŝi (B) = ŝi+1 (B) + ŝi+1 (B ∪ {xi+1}) (3.11)

12



3.2. SSFTW3 Algorithm

for all 0 ≤ i < n. If the left side of the equation is zero, then the right
side must be zero and so B and B ∪ {xi} cannot be in the support of
si+1. Of course this assuming that there are no cancellations on the right
hand side. This is a condition that must hold for the SSFT algorithms
to work.

In the next two sections we will solve these two issues.

Algorithm 1 Sparse set function Fourier transform of s

1: M0 ← ∅
2: s0 (∅)← s (I)
3: for i = 1, . . . , n do
4: Mi ← Mi−1 ∪ {xi}
5: B ← ∅
6: for B ∈ supp(ŝi−1) do
7: B ← B ∪ {B, B ∪ {xi}}
8: end for
9: sA ← (s (A))A∈A

10: x← solve sA = F−1
ABx for x

11: for B ∈ B with xB ̸= 0 do
12: ŝi (B)← xB
13: end for
14: end for
15: return sn

3.2.1 Determining the coefficients with known support

First, we start with the easier task to determine the Fourier coefficients of
a set function knowing its support. Given the support, or a super set of
it, B ⊇ supp(ŝ) and an appropriate choice of A ⊆ N, one can then exactly
determine ŝ, by solving the following system of linear equations:

sA = F (W3)−1
AB ŝB (3.12)

Where, as before, sA and ŝB denote the vectors of set function evaluations in-
dexed by A and set function coefficients indexed by B respectively. F (W3)−1

AB
is the inverse Fourier transform matrix where we only selected the rows
indexed by A and the columns indexed by B. Note that all non-zero coeffi-
cients of ŝ are in ŝB .
To compute the Fourier coefficients vector ŝ we need an appropriate choice
of A. Namely we want to select an A such that we can uniquely determine
ŝB , i.e, we want F (W3)−1

AB to be invertible.
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3. Weighted Fourier Transform for Set Functions

Let B = {b1, . . . , bk} ⊆ 2N . We consider the associated sampling operator

PB : R2n −→ Rk; s 7→ sB = (sb1 , . . . , sbk)
T (3.13)

Lemma 3.4 (Sampling Lemma) Let s be k-Fourier-sparse with supp(ŝ) = {B1, ..., Bk} =
B. Then F (W3)−1

BB is invertible and s can be perfectly reconstructed from the queries
sB = PBs. Namely, s = IBsB with IB = F (W3)−1

2NB (F (W3)−1
BB )−1.

Proof As s has Fourier support B. We have that

s = F (W3)−1
2NB ŝB (3.14)

Applying the sampling operator on both sides yields

sB = F (W3)−1
BB ŝB . (3.15)

What remains is to show that F (W3)−1 is invertible. F (W3)−1 is lower-
triangular with diagonal elements at indices (B, B) for B ⊆ N. Hence
F (W3)−1
BB is lower-triangular and thus invertible. □

Thus for SSFTW3 at lines 9-10 we will have A = B.

3.2.2 Determining the sequence of restrictions

We have seen in the previous section that if we know the support of s, we
just have to solve a linear system of equations to determine the Fourier
coefficients. Now what remains is to determine the support of a set function
s. For that purpose define a sequence (s0, . . . , sn) of restrictions. We use the
following restriction on s as presented in [1]. Let M ⊆ N with |M| = m and
L = N\M, we have

s ↓L∪2M : 2M −→ R; A 7→ s(L ∪ A) (3.16)

Our sequence of restrictions is then

(s0 = s ↓L∪2∅ , s1 = s ↓L∪2{x1} . . . , sn = s ↓L∪2N ). (3.17)

This restriction was first introduced in [1] to enable the SSFT3 algorithm.
Since we are using a weighted version of the DSFT3 transform, it also works
for us. This is shown formally by the following lemma, which relates the
Fourier coefficients of a restriction with the coefficients of s.

Lemma 3.5 Modified from [1, Lemma 9]

s ↓Mc∪2M

∧(W3)
(B) = 2−|M

c| ∑
A⊆Mc

(
√

3)|A| ŝ(W3)(A ∪ B) (3.18)

14



3.2. SSFTW3 Algorithm

Where Mc = N \M.

Proof We have s ↓Mc∪2M

∧(W3)
(C) = s (C) per definition, for all C ∈ 2M. Per-

forming the Fourier expansion on both sides yields

∑
B⊆C

√
3
|B|

2−|C|s ↓Mc∪2M

∧(W3)
(B) = ∑

B⊆Mc∪C

√
3
|B|

2−|M
c∪C| ŝ (B)

= ∑
B⊆C

√
3
|B|

2−|C| ∑
A⊆Mc

√
3
|A|

2−|M
c| ŝ (A ∪ B) .

(3.19)
(3.18) is the unique solution for the system of 2|M| equations given by (3.19).□

From the above lemma follows the equality

s ↓Mc∪2M

∧(W3)
(B) =

1
2
(s ↓(M∪{x})c∪2(M∪{x})

∧(W3)
(B)+ s ↓(M∪{x})c∪2(M∪{x})

∧(W3)
(B∪{x}))

(3.20)
for some x ∈ N \ M. Note that this is exactly the property we wished
for, as displayed in equation (3.11). Again, we now know that, assum-
ing the right side doesn’t cancel, if the left side is zero, the two compo-
nents on the right side must also be zero. So B and B ∪ {x} cannot be

in supp(s ↓(M∪{x})c∪2(M∪{x})

∧(W3)
). We then conclude that we can construct

B ⊇ supp(s ↓(M∪{x})c∪2(M∪{x})

∧(W3)
) by performing the following union opera-

tion:
B =

⋃
B∈supp(s ↓Mc∪2M

∧(W3)
)

{B, B ∪ {x}} (3.21)

Concretely, we can retrieve ŝ(W3) by iterating through the chain of n subprob-
lems:

s ↓N∪2∅ = s ↓N∪2∅

∧(W3)
, s ↓N\{x1}∪2{x1}

∧(W3)
, . . . , s ↓∅∪2N

∧(W3)
= ŝ(W3) (3.22)

This under the assumption that no cancellations occur in the sum (3.18).
Note that s ↓N∪2∅(∅) = s(N), so in SSFTW3 we have I = N at line 2.
By applying the lemmas in this and the previous section we result in the
SSFTW3 algorithm.

3.2.3 Efficient sampling

In the previous section we presented a rough outline of how the algorithm
works. But in order to achieve the time and query complexity as in lemma
(2.7) we need go in more detail.
In every iteration of the SSFTW3 algorithm we have to solve the linear
system

sB = F (W3)−1
BB ŝB (3.23)
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3. Weighted Fourier Transform for Set Functions

for ŝ. It turns out that at each iteration we can reuse some of the queries
performed at the previous iteration. To be precise we can reuse exactly half
of the queries. We introduce the notation B + x = {B ∪ {x} : B ∈ B} for sets

of subsets B ⊆ 2N and Bk = supp(s ↓Mc
k∪2Mk

∧(W3)
). Further we observe that

given Bi−1 = supp(s ↓Mc
i−1∪2Mi−1

∧(W3)
) and Ti−1 = F (W3)−1

Bi−1Bi−1
, we can compute

Bi from a linear system constructed from Ti−1.

Lemma 3.6 Modified from [1, Lemma 8] Let B = Bi−1 ∪ (Bi−1 + xi). We have

supp(s ↓Mc
i∪2Mi

∧(W3)
) ⊆ B.

Let
qxi = (s (B))Bi−1+xi and qxi = (s (B))Bi−1 . (3.24)

Then

F (W3)−1
BB =

(
Ti−1 0

1
2 Ti−1

√
3

2 Ti−1

)
(3.25)

and the solution of (
Ti−1 0

1
2 Ti−1

√
3

2 Ti−1

)(
q̂xi

q̂xi

)
=

(
qxi

qxi

)
(3.26)

contains the Fourier coefficients of s ↓Mc
i∪2Mi

∧(W3)
and is given by

q̂xi = (Ti−1)−1qxi and

q̂xi = (Ti−1)−1 1√
3
(2qxi − qxi).

(3.27)

Proof The proof is analogous to the one in [1]. Here we only list the most
important differences. First as in [1] we introduce the functions Φ and
ρ. Let φ : 2N → {0, 1}n ⊆ Rn be the mapping from sets to indicator
vectors, i.e., for A ⊆ N, φ(A)i = 1 if xi ∈ A and φ(A)i = 0 if xi ̸∈ A. Let
Φ denote the mapping from sets of subsets A to indicator matrices, i.e.,
Φ(A) = (φ(A)T)A∈A ∈ {0, 1}|A|×n ⊆ R|A|×n. Let,

ρ : R→ R; a 7→
{

1 if a = 0,
0 else.

Then the first difference to [1] is the construction of the Fourier matrix. Which
is to be expected since we use a different transform. Let CAB be a matrix

indexed by elements of 2N where (CAB)AB = 2−|A|
√

3
|B|

for A ∈ A and
B ∈ B. With the introduced notation in place, and the fact that if B1 ⊆ B2
then Bc

2 ∩ B1 = ∅, we have

F (W3)−1
BB = ρ(ρ(Φ(B))Φ(B)T)⊙ CBB . (3.28)
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3.2. SSFTW3 Algorithm

We also observe that

Φ(B) =
(

Φ(Bi−1)
Φ(Bi−1 + xi)

)
. (3.29)

With this insights and the introduction of C the proof becomes trivially similar
to the proof of lemma 8 in [1]. □

Let si−1 := s ↓Mc
i−1∪2Mi−1

∧(W3)
and si := s ↓Mc∪2M

∧(W3)
. Recall that

qi−1 = (si−1 (B))B∈Bi−1 and si−1 (B) = s({xi . . . xn} ∪ B). From the definition
of set function restriction, it follows that:

si (B ∪ {xi}) = s({xi+1 . . . xn} ∪ (B ∪ {xi}) = si−1 (B)

Which means that some evaluations of si are equal to evaluations of si−1,
hence:

qxi = qi−1 (3.30)

we can then conclude that we can reuse queries from iteration i − 1 in
iteration i.
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Chapter 4

Empirical Evaluation

We evaluate the SSFTW3 algorithm together with SSFT4 and SSFT3 on six
set function classes. The first three classes are the same as in [1]: Objective
functions for sensor placement tasks, preference functions for contamination
detection in water networks and functions representing simulated bidders in
auctions.
After that we evaluate the three transforms on three new classes. First, we
study the Fourier sparsity of empirical [16, 17] and simulated [18] fitness
functions. After that we learn random forest regressors trained on binary
input data obtained from [19]. Finally, we study set functions mapping
subsets of gcc compiler’s optimization options to the size in bytes of the
compiled program. The object file sizes were obtained using compiler gym
[20].
Note that in all our experiments we constrained the SSFT algorithms to make
at most 1000 set function query accesses per iteration. This implies that at
most 2000 Fourier coefficients are returned. We also report the threshold
we used for each experiment, i.e., the value below which a coefficient is
considered as zero.

SSFT+ algorithm. Before presenting the results we briefly introduce SSFT+,
a variation of the SSFT algorithms for mitigating the effect of cancellations.
Recall that for the SSFT algorithms to work, we assume that the Fourier
coefficients do not cancel out.
The SSFT+ algorithms were introduced in [1]. They work by modulating
the coefficients of s so that they don’t cancel by applying a one-hop filter on
s. Then transforming the filtered function and attaining the true Fourier coef-
ficients by applying the convolution theorem. The drawback is an increased
query and time complexity. As always SSFT3+ and SSFT4+ refer to SSFT+
instantiated in the respective models.
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4. Empirical Evaluation

4.1 Sensor Placement

The first set function class we evaluate was already studied in [1] for assessing
the performance of the SSFT4 algorithm. Here we consider a discrete set
of sensors located at different positions measuring a quantity of interest,
e.g., temperature, amount of rainfall, or traffic data and want to find an
informative subset of sensors subject to a budget constraint on the number
of sensors selected.
In [1] the informativeness of a subset of sensors A ⊆ N is quantified with
the formula:

G (A) =
1
2

log |I|A| + σ−2(Kij)i,j∈A|, (4.1)

where (Kij)i,j∈A is the submatrix of the covariance matrix K that is indexed
by the sensors A ⊆ N and I|A| the |A| × |A| identity matrix. As said we
want to find an informative subset of sensors constrained on the number of
sensors. G is approximately maximized by A∗ ≈ arg maxA⊆N:|A|≤dG (A) [1].
We wish to learn G by finding its support in the Fourier domain using the
SSFT algorithms. Let s be the Fourier-sparse surrogate of G. We then also
maximize s: A+ ≈ arg maxA⊆N:|A|≤ds (A) and compute s(A+). As in [1] we
use G(Arand) as baseline, where Arand is a random subset of d sensors.
In [1] three set functions were constructed this way for temperature mea-
surements from 46 sensors at Intel Research Berkeley, for velocity data from
357 sensors deployed under a highway in California and for 167 detecting
rainfall amounts [1].

Interpretation of results. As was already shown in [1] model 4 performs
really well in the sensor placement tasks. Nevertheless model 3 is comparable
to it for the datasets Rain and Cali f ornia, thus indicating that set functions of
this class are also sparse w.r.t model 3. For the Rain dataset model 3 performs
even slightly better than model 4. Only for Berkeley model 3 performs poorly.
SSFTW3 performs reasonably well only on the Berkeley dataset, where it is
better than model 3. But for datasets Rain and Cali f ornia it doesn’t compare
to models 3 and 4.

4.2 Learning Preference Functions

Again we look at a class of set functions already discussed in [1]. We consider
a class of preference functions that are used for the cost-effective contami-
nation detection in water networks (citation in [1]). A more understandable
explanation of the set function class is presented in [1]. Here we only mention
that we want to determine a cost-effective subset of sensors, by quantifying
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(a) Berkeley, n = 46
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(b) California, n = 357
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(c) Rain, n = 167

Figure 4.1: Comparison of learnt surrogate objective functions on submodular maximization tasks
subject to cardinality constraints (x-axis); On the y-axis we plot the information gain achieved by
the informative subset obtained by the respective method. Threshold at 1e−3.

the informativeness of each subset of sensors with a set function of the form

p : 2N → R; A 7→
L

∑
ℓ=1

max
i∈A

rℓi, (4.2)

where r is a matrix in RL×n
≥0 . Each row corresponds to an event (e.g., contami-

nation of the water network at any junction) and the entry rℓi quantifies the
utility of the i-th sensor in case of the ℓ-th event. We want to learn p.

We use the same r ∈ R3424×12527 utility matrix as in [1]. For its source we
refer to [1]. From this utility matrix we obtain subnetworks by selecting
the columns that provide the maximum utility, i.e., we select the |N| = n
columns j with the largest maxℓ rℓj.
We applied the SSFT algorithm w.r.t models 3, 4 and W3 and show the
amount of queries needed to retrieve all non-zero Fourier coefficients, the
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4. Empirical Evaluation

Table 4.1: Comparison of model 4, 3 and weighted 3 sparsity of facility locations functions in
terms of reconstruction error ∥p− p′∥/∥p∥ for varying |N| and threshold at 1e−3.

|N| α queries time (s) k ∥p− p′∥/∥p∥

10 SSFT4 129 0.02 36 0.0
SSFT3 113 0.03 65 0.08
SSFT3+ 1, 466 0.21 279 0.02
SSFTW3 1, 024 0.13 1, 023 0.0

20 SSFT4 735 0.24 102 0.0
SSFT3 1, 379 0.25 577 0.17
SSFT3+ 26, 411 2.34 1, 999 0.036
SSFTW3 11, 024 2.06 1, 999 0.82

50 SSFT4 9, 788 2.88 648 0.0
SSFT3 27, 421 5.10 1, 999 2.3
SSFT3+ 613, 913 70.48 1, 999 2.26
SSFTW3 41, 024 14.27 1, 999 1.0

number of coefficients retrieved, the execution time and the reconstruction
error. The results can be seen in table 4.1.

Interpretation of results. Clearly models 3 and W3 do not perform as well
as model 4. This is to be expected, since this class of set functions is by
construction sparse w.r.t model 4 [1]. Only for n = 10 can SSFT3 achieve
comparable results with low reconstructions errors. Also the observation
that SSFT3+ has a lower reconstruction error than SSFT3 indicates that
cancellations occur. This becomes even more clear for n = 20, where the
reconstruction error of SSFT3 is significant, but still doesn’t reconstruct the
maximum number coefficients, whereas SSFT3+ does.
SSFTW3 is not able to achieve any good results in this function class, in-
dicating that the class is not sparse w.r.t model W3. Only for n = 10 we
get a reconstruction error of 0, but this is just due to the fact that SSFTW3
reconstructed all 210 coefficients. The only positive note being that there are
apparently no cancellations.

4.3 Preferece Elicitation in Auctions

In combinatorial auctions a set of goods N = {x1, . . . , xn} is auctioned to a
set of m bidders. Each bidder j is modeled as a set function bj : 2N → R

that maps each bundle of goods to its subjective value for this bidder. The
problem of learning bidder valuation functions from queries is known as
the preference elicitation problem (citation in [1]). The experiment from [1],
which we repeat with our SSFT algorithms, sketches an approach under the
assumption of Fourier sparsity.

As described in [1] we resort to simulated bidders. Specifically, we use
the multi-region valuation model (MRVM) from the spectrum auctions test
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4.4. Fitness Functions

Table 4.2: Multi-region valuation model (n = 98). Each row corresponds to a different bidder
type. Threshold at 1e−3.

number of queries (in thousands) Fourier coefficients recovered relative reconstruction error
B. type SSFT4 SSFT3 SSFTW3 SSFT4 SSFT3 SSFTW3 SSFT4 SSFT3 SSFTW3

local 4± 4 6± 1 89± 0 121± 126 278± 75 1, 976± 30 0.5063± 0.4937 0.1184± 0.0186 1.0± 0
regional 17± 1 16± 2 89± 0 561± 30 739± 83 1, 999± 0 0.0121± 0.0034 0.1109± 0.0150 1.0± 0
national 75± 0 22± 0 89± 0 1, 027± 3 1, 026± 8 1, 999± 0 0.0115± 0.0018 0.1717± 0.0902 1.0± 0

number of queries (in thousands) Fourier coefficients recovered relative reconstruction error
B. type SSFT4+ SSFT3+ SSFT4+ SSFT3+ SSFT4+ SSFT3+

local 232± 51 216± 74 323± 72 493± 174 0.0± 0.0 0.0303± 0.0140
regional 608± 11 548± 102 807± 33 1038± 2 0.0± 0.0 0.1382± 0.1450
national 3, 543± 2, 881 816± 20 1, 037± 4 1024± 11 0.0103± 0.0080 0.4099± 0.0693

suite (citation in [1]). In MRVM, 98 goods are auctioned off to 10 bidders of
different types (3 local, 4 regional, and 3 national). We learn these bidders
using the prior Fourier-sparse learning algorithms, including SSFT3+ and
SSFT4+. Table 4.2 shows the results: means and standard deviations of the
number of queries required, Fourier coefficients recovered, and relative error
(estimated using 10,000 samples) taken over the bidder types and 10 runs.

Interpretaion of results. Also in this case the set functions class in sparser
w.r.t. model 4. Cancellations occur for both models 3 and 4, but when
applying the SSFT+ algorithms model 4 is still considerably better than
model 3. SSFTW3 reaches the limit of computing 2000 coefficients, while
having a huge relative error, which means that the underlying function is not
sufficiently sparse for the algorithms to work.

4.4 Fitness Functions

Fitness functions, or fitness landscapes, map genotype to phenotype. The
genotype of an organism is its complete set of genetic data. The phenotype
is an observable trait. In our case it is a real number and a measure for
fitness. For example, suppose we are interested in bacterial resistance to
antibiotics. Given an ancestor genotype of the bacteria, we perform mutations
on the bacteria, thus changing its genotype. We then, through experiments,
measure the resistance to antibiotics after the mutation. This results in a
fitness function mapping various genotypes of our bacteria to its phenotype
(the antibiotic resistance).

Special cases of fitness functions are set functions. We then have a set N =
{x1, ..., xn} of ”mutations” and a function s : 2N −→ R mapping from genotype
to phenotype. For example s({x1, x3}) is the fitness value if mutations x1 and
x3 occurred in the genome. s(∅) is the fitness of the ancestor genotype, e.g.,
with no mutations.
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Figure 4.2: Poelwijk, n = 13

In the following sections we will briefly introduce the fitness function datasets,
describe them shortly and present our results. First we will present the
results on the empirical fitness functions. Then we will present our results
on simulated fitness functions. In our case we used the widely adopted
NK-model [18] to simulate fitness functions.

4.4.1 Empirical Fitness Functions

In this section we study fitness functions generated from empirical studies.
Since the ground sets of all of these fitness functions isn’t very large, we
applied the ”naive” discrete-set Fourier transform and simply multiplied the
vectorized set function with the corresponding transform matrix. We did
this for models 3, 4 and W3. We also transformed the set functions with
the Walsh-Hadamard Transform (WHT), which is widely used for studying
biological fitness functions [17, 21, 16]. We then plotted the scaled, average
magnitude of all coefficients of a specific frequency cardinality.

The Poelwijk dataset. This dataset, created by the authors of [16], maps
all mutations at 13 different positions in a protein to the brightness of the
protein. The results of applying our transforms can be seen in figure 4.2

Collection of datasets. This collection of many combinatorially complete
empirical biological fitness functions is presented in [17]. The single datasets
are from different studies, for their respective sources we refer to [17]. In
figure 4.3 we present our results.

Interpretation of results. As one can clearly see our transforms are not
performing too well on the empirical fitness functions. Only in a few datasets
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(a) Bank, n = 6 (b) Devisser, n = 5

(c) Hall , n = 6 (d) Khan, n = 5

(e) Omaille, n = 6 (f) Palmer, n = 6

(g) Weinreich, n = 5 (h) Whitlock, n = 5

Figure 4.3: Magnitude of Fourier coefficients of various empirical fitness functions. On the
x-axis we have the discrete-set ”frequencies” in ascending order of cardinality, on y-axis the scaled
absolute value of the corresponding coefficients.
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such as Devisser, Hall, Khan and Weinreich one can see a resemblance of
sparsity in the lower frequencies. Unfortunately this sparsity is not sufficient
for the SSFT algorithms to reconstruct the function with a low reconstruction
error, without using all frequencies. The WHT peforms better, and while it is
not the focus of this work it is to note that SSFT can be performed with the
WHT [1], but significantly better algorithms exist [6].

4.4.2 Simulated Fitness Functions

As mentioned above we also transformed simulated set functions generated
using the NK-model. The NK-model, first introduced in [18], is widely used
as a fitness function surrogate.
As explained in [22] a NK landscape, a fitness landscape generated with the
NK-model, contains two parameters: n and k. n is the size of the ground
set which corresponds to a set N = {x1, . . . xn} of mutations. k describes
the number of epistatic interactions. Epistasis can be understood as the
dependence of the effect of a mutation from the presence or absence of
other mutations [22]. So clearly 0 ≤ k ≤ n− 1, where k = 0 means that all
mutations are independent from each other and k = n− 1 means that all
mutations depend from each other.
It is easier to understand the role of the parameter k when looking at the
fitness value NK(m) of a particular subset m ⊆ N [22]. Where we interpret
m as a indicator sequence, which is 1 at index i if mutation xi occurs and 0
otherwise.

NK(m) =
1
n

n

∑
i=1

fi(ni(m)) (4.3)

(formula presented in [22]) with ni : C(n) −→ C(k + 1), fi : C(k + 1) −→ R

where C(n) is the set of all binary sequences of length n, ni outputs the
indicator sequence for xi and all mutations that interact epistatically with xi
from the input sequence s and fi calculates the fitness contribution of the i-th
epistatic component.
For example consider n = 3 and k = 1. Then we have N = {x1, x2, x3}.
Assume xi and xi+1 mod 3 + 1 build an epistatic component. The fitness value
of s = [1, 0, 1], which corresponds to the set {x1, x3} is then

NK([1, 0, 1]) =
1
3
( f1([1, 0]) + f2([0, 1]) + f3([1, 1])). (4.4)

The larger k is the more variable and complex the NK landscape becomes,
which means that the larger k becomes the more rugged the NK landscape is
[22].
For our evaluation we created NK landscapes where the epistatic components
where chosen randomly and each value of fi was drawn at random from a
normal distribution. The code implementation of the NK landscapes is based
on the work of the authors of [23]. For our experiments we chose n = 10 and
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k values from 2 to 4. As before we performed DSFT3, DSFT4, WDSFT3 and
WHT via matrix multiplications. The results can be seen in figure 4.4. We
also transformed NK landscapes with a noise component, those are on the
right side of figure 4.4.

Interpretation of results. Looking only at the exact NK landscapes (left
column) we can see DSFT3, DSFT4 and WHT perform quite well and behave
equally regarding sparsity. The NK landscapes are very sparse for low k
values, but as expected get less and less sparse for larger k as more and more
randomness comes into play. Unfortunately the NK landscapes don’t seem
to be sparse in the Fourier domain w.r.t model W3.
WHT is the only transform that performs well for noisy NK landscapes,
which is to be expected since the WHT matrix as defined in discrete-set SP
theory [8] has a condition number of exactly one. This may explain why all
transforms apart from WHT were not sparse for the empirical landscapes.
Note that the plots in the noisy fitness landscapes for our transforms look
fairly similar to the ones of the empirical fitness landscapes. This could
indicate that noise is indeed the issue. Also consider that of course NK
landscapes don’t model empirical landscapes perfectly [22].
A motivating argument for WDSFT3 was the low condition number and
thus the hope of being less susceptible to errors, but fitness functions do not
appear to be sparse w.r.t model W3 even in the noiseless case, so its hard to
draw conclusions. Nevertheless the coefficient magnitude ”shifts” to larger
frequencies for model W3 too in the noisy landscapes, which could be an
indication that its still strongly affected by noise.

4.5 Learning Random Forest Regressors

For our next function class we perform the Fourier transform(s) of a random
forest regressor (RFR). Recall that given a dataset D ∈ Rn×d, with n sam-
ples and d features, and labels y ∈ Rn the RFR aims to learn the function
f : Rn −→ R, where f (Di) = yi. For this task we use a dataset mapping 81
features of 21263 different superconductors to their corresponding critical
temperatures from [19]. The set function s to learn for this task was con-
structed the following way: First we binarized the features in the dataset
D, obtaining Dbin ∈ {0, 1}n×d′ . Then we trained a RFR on Dbin and y, ob-
taining a trained RFR s. The set function we learn is then s : N −→ R, with
N = {x1, . . . , xd′}.

Each feature was binarized independently from one another to m bit vectors,
by applying the binarization method presented in [24]. Consider a feature
vector v = D:,i, e.g. the i-th column of D. Let a and b be the minimum
and maximum values respectively in v. We then split the interval [a, b] in m
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4. Empirical Evaluation

(a) n = 10, k = 2 (b) n = 10, k = 2 (noisy)

(c) n = 10, k = 3 (d) n = 10, k = 3 (noisy)

(e) n = 10, k = 4 (f) n = 10, k = 4 (noisy)

Figure 4.4: Avg. magnitude of all Fourier coefficients of frequencies of the same magnitude of
NK landscapes. On the x-axis we have the frequency cardinality, on y-axis the scaled average
absolute value of the corresponding. coefficients.
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4.5. Learning Random Forest Regressors

Table 4.3: Comparison of model 4, 3 and weighted 3 sparsity of random forest regressors in
terms of reconstruction error ∥s− s′∥/∥s∥ for varying parameters m, maxdepth and threshold at
1e−8.

m maxdepth queries time (s) k ∥s− s′∥/∥s∥

5 2 SSFTW3 396k 60.73 2000 1.0
SSFT4 215k 52.16 1000 0.017
SSFT3 220k 46.62 1000 0.014

5 3 SSFTW3 396k 46.75 2000 1.0
SSFT4 295k 46.96 1000 0.043
SSFT3 296k 38.37 1000 0.046

5 4 SSFTW3 396k 48.12 2000 1.0
SSFT4 322k 46.36 1000 0.058
SSFT3 326k 42.04 1000 0.098

10 2 SSFTW3 failed
SSFT4 458k 86.97 1000 0.018
SSFT3 474k 95.08 1000 0.012

10 3 SSFTW3 failed
SSFT4 595k 104.02 1000 0.039
SSFT3 610k 107.02 1000 0.097

10 4 SSFTW3 failed
SSFT4 656k 102.22 1000 0.049
SSFT3 661k 121.74 1000 0.23

evenly spaced intervals

[p1 = a, p2), [p2, p3), . . . , [pm−1, pm = b]. (4.5)

Then naturally each entry of v will be converted to a sequence of length m,
with the i-th bit set to one if the entry is contained in the i-th interval. Dbin
will then be a matrix {0, 1}n×md.
Again we applied the SSFT3, SSFT4 and SSFTW3 algorithms. We did this
for various values of m and different maximal depth (maxdepth) values. The
results can be seen in table 4.3.

Interpretion of results. Both SSFT3 and SSFT4 perform well for shallow
tress, e.g. maximal depths of 2 and 3. However when the trees become deeper
both of the algorithms struggle to reconstruct the set functions perfectly. For
the case m = 10 and maxdepth = 4 the error of SSFT3 becomes too large,
whereas for model 4 its considerably lower.
SSFTW3 does not perform well on this class of functions. For m = 5 it
reconstructs the maximal amount of coefficients, but the relative error is still
maximal. We omitted the results for n = 10 as this set function class is clealy
not sparse w.r.t model W3.
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4. Empirical Evaluation

Table 4.4: Comparison of model 4, 3 and W3 sparsity of object file size task in terms of
reconstruction error ∥s− s′∥/∥s∥ for varying n and threshold at 1e−8.

n queries time (s) k ∥s− s′∥/∥s∥

SSFTW3 10 1,024 24.02 1,024 0.0
20 failed
50 failed
100 failed

SSFT4 10 19 19.70 2 0.0
20 41 51.63 3 0.0
50 304 324.77 15 0.0009
100 1,238 1536.36 23 0.0011

SSFT3 10 19 24.02 2 0.0
20 43 55.34 4 0.0
50 272 342.37 15 0.0012
100 1,614 1783.37 30 0.0011

SSFT4+ 50 6,349 7965.34 34 0.0004
100 148,686 270,455.60 143 0.0003

SSFT3+ 50 8,178 8966.83 52 0.0004
100 timeout

4.6 Compiler Optimization Tasks

Another interesting class of set functions are mappings from a set of options
flags of a compiler to various properties of the compiled program, such as
size or execution time.

For our experiment we mapped a set of optimization flags of the gcc compiler
to the size in bytes of the resulting compiled C program. As tool to extract
this data we used compiler gym [20].
We then considered a set function s : 2N −→ R where N = {x1, . . . , xn} is a
set of n randomly chosen option flags. s maps each subset of activated flags
to the size of the compiled object file.
In table 4.4 you can see our results for different n. Note that some flags have
more than one option, we just chose the default option.

Interpretation of results. This class of set functions seems particularly
sparse w.r.t models 3 and 4. Furthermore as the reconstruction error is
always zero there occur no cancellations. The impressive performance of
SSFT4 and SSFT3 can be partly attributed to the observation, that most of
the option flags do not affect the size of object file. Hence it could be more
interesting to perform these transforms with programs susceptible to the
chosen ground set of flags. However SSFT4+ and SSFT3+ achieve slightly
better results for n = 50, so there appear to be some cancellations. SSFT4+ is
also better than SSFT4 for n = 100, where it discovers more coefficients and
has a smaller relative error. SSFT3+ for n = 100 timed out after we ran the
experiment for three days.
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4.6. Compiler Optimization Tasks

SSFTW3 does not perform well. For n = 10 it reconstructs all coefficients.
We omitted results for greater n as the functions are clearly not sparse w.r.t
model W3.
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Chapter 5

Conclusion

We have implemented a new sparse set function Fourier transform and
evaluated its performance, together with other algorithms of the same family,
on multiple classes of set functions.

When looking at the Fourier space as a kernel space the WDSFT3 seems
a more sensible choice compared to the plain unweighted non-orthogonal
transforms. However SSFTW3 does not perform well on any of our set
function classes. For the case of the exact function classes, such as the sensor
placement task, auction elicitation functions, preference functions and object
file sizes, the set functions were simply not sparse enough in the Fourier
domain of DSFTW3. Only for one of the sensor placement tasks was it com-
parable to SSFT3 and SSFT4. In the case of the empirical fitness landscapes
one could attribute the poor performance to noise in the signal. But still even
the noiseless NK-landscapes were dense w.r.t model W3, which suggests
that the noise is not the only issue. Relevant set functions that are sparse
w.r.t model W3 remain to be discovered. The conjecture that the sparsity
w.r.t model W3 is less negatively affected by noise in the signal, because of
the lower condition number, also remains to be confirmed or denied, as we
couldn’t observe any sparsity.
On the other hand most of the newly implemented function classes: the
exact NK landscapes, object file size functions and random forest regressors,
appear to be very sparse w.r.t models 3 and 4. Which further motivates the
study of non-orthogonal transforms as in [8].
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