Learning Set Functions that are Sparse in Non-Orthogonal Fourier Bases **ETH** zürich

Chris Wendler, Andisheh Amrollahi, Bastian Seifert, Andreas Krause, Markus Püschel Department of Computer Science, ETH Zurich

Motivation

Goal: Learn s from few queries Challenge

Set functions are exponentially large (2ⁿ)

Fourier-sparse set functions

New Non-Orthogonal Fourier Bases

- new classes of learnable set functions
- new learning algorithms
- theoretical and experimental analysis
- interpretation: new Fourier-sparsity captures complementarity and stubstitutability

Set Function Fourier Transforms

Derivation: Algebraic Signal Processing (ASP)

shift —— shift equivariant —— Fourier transform convolutional filters

 $(T_Q s)(A) = s(A \cup Q)$ Shift by $Q \subseteq N$

Convolutional filter

Equivariance

$$h * T_Q s = T_Q(h * s)$$

5 different shifts \rightarrow 5 Fourier transforms s_1

our paper: model 4 prior: Walsh Hadamard transform = model 5

Known Support

Given oracle access to a Fourier-sparse set function sand its support $\mathcal{B} = \text{supp}(\widehat{s}) = \{B_1, \dots, B_k\}$, learn s from few queries.

Idea

Theorem There always are queries s.t. the resulting is triangular and invertible. submatrix

O(k) queries, $O(k^2)$ operations

Fourier Sparsity

Set function = Venn diagram of needs

Fourier coefficients associate values to needs

Unknown Support

Given oracle access to a Fourier-sparse set function s, learn s from few queries.

Consider subproblems p_1, p_2, \ldots, p_n : $p_i(A) = s(A) \text{ for } A \subseteq \{y_1, \dots, y_i\} \subseteq N$

Observation $\operatorname{supp}(\widehat{p_{i+1}}) \longrightarrow \operatorname{supp}(\widehat{p_i})$

Sparse Set Function Fourier Transform:

SSFT Algorithm

avoids unnecessary computation

1. compute $\widehat{p_1}$ explicitely 2. compute $\widehat{p_i}$ from $\widehat{p_{i-1}}$ by solving the known support

problem, for $i = 2, \ldots, n$

Queries

O(nk) instead of 2^n

Operations

3. return $\widehat{p_n} = \widehat{s}$

 $O(nk^2)$ instead of $n2^n$

FFT

Refinement Algorithm

SSFT does not always work

Problem we have $\operatorname{supp}(\widehat{p_{i+1}}) \xrightarrow{\leftarrow} \operatorname{supp}(\widehat{p_i})$

Cancellations can occur

SSFT does not proccess children of 0's

Refinement Algorithm (SSFT+) use novel filtering

techniques to ensure

Operations $O(n^2k + nk^2)$

*Please find the details and analysis of SSFT(+) in our paper.

Experimental Evaluation

Facility Locations Functions

N = facility locations s importance score

contamination events detected

Goal: learn importance score \rightarrow find 5 best locations

Data from battle of water networks (Leskovec, 2007)

$\ \mathbf{p} - \mathbf{p}'\ /\ \mathbf{p}\ $	k	time (s)	queries	lpha		N
0	648	2	10K		SSFT	50
0.001744	1,380	361	2,103K	1	R-WHT	
0.000847	2,739	766	4,192K	2		
0.000129	5,054	1,499	8,370K	4		
0.000108	9,547	2,838	16,742K	8		
0	2,308	24	76 <i>K</i>		SSFT	100
0.000546	2,997	5,014	16,544K	1	R-WHT	
0.000380	6,466	10,265	33,100K	2		
0	7,038	451	494K		SSFT	200
0	16,979	2,368	1,644K		SSFT	300
0	28, 121	7,654	3,859K		SSFT	400
0	38,471	17,693	7,218K		SSFT	500

SSFT requires only 1,6 million queries to perfectly learn a 2³⁰⁰ dimensional set function.

Preference Elicitation in Combinatorial Spectrum Auctions

N = licenses of bands electromagnetic spectrum

Set functions = bidders

Example with |N| = 17 licenses

Goal: learn preferences → assign licenses to bidders

Multi region value model, |N| = 98, 3 bidder types (rows)

	number of que	eries (in thousands) H-WHT	Fourier coeff SSFT+	ficients recovered H-WHT	relative recon SSFT+	struction error H-WHT
	DDI 1 T	11- 44 11 1		11- 44 11 1	BB1 1 T	11- 44 11 1
L	229 ± 73	781 ± 0	303 ± 93	675 ± 189	0 ± 0	0 ± 0
R	646 ± 12	781 ± 0	813 ± 36	$1,779 \pm 0$	0 ± 0	0 ± 0
N	$3,305 \pm 1$	781 ± 0	$1,027 \pm 6$	$4,170 \pm 136$	0.01 ± 0.01	0.27 ± 0.21

SSFT+ perfectly learns the preferences of regional bidders using 656,000 queries and 813 Fourier coefficients.