
University of Innsbruck

Institute of Computer Science

Intelligent and Interactive Systems

On the Missing Value Problem Using Kernels

Chris Wendler
chris.wendler@student.uibk.ac.at

M.Sc. Thesis
Supervisor: Sandor Szedmak

sandor.szedmak@aalto.fi
23rd November 2016

In memory of my father, Jimmy.

ii

Abstract

Machine learning tasks lurk wherever large amounts of data are of concern. Not only computer
science applications such as social networks or webshops but also problems occurring in areas
like life science or economics give rise for different machine learning tasks such as object classifi-
cation, item recommendation or the prediction of unknown relationships. Despite the variety of
these tasks, their underlying optimization problems are often similar and can be cast as special
cases of the missing value problem, in which the missing values of a table are inferred using the
observed ones.
This thesis aims to illuminate the theoretical foundations required to understand such prob-
lems ranging from the formalization to the solution of the corresponding optimization problems.
In order to do so, the application of kernel methods to learning tasks of increasing difficulty,
starting with classical and ending with structured-output learning tasks, is investigated. The
implicit knowledge given by the data is modeled by a linear operator between Hilbert spaces, in
which the input and output data are represented. Utilizing the notion of reproducing kernels,
the resulting hypothesis spaces are accessible in an elegant way. Different learning tasks can be
characterized by loss functions measuring the quality of a certain hypothesis with respect to the
task. Given a loss function and a hypothesis space, a hypothesis is found by regularized risk
minimization.
In the end, the previous efforts culminate in a learning framework capable of handling the miss-
ing value problem for structured objects. This thesis shows that the application of the kernel
trick allows for the solution of various learning tasks in a unified and efficient way.

iii

iv

Acknowledgments

I would first like to thank my thesis supervisor Sandor Szedmak of the Aalto university. Sandor
was a very patient supervisor, who spent a lot of time and effort in answering my questions, of
which I had a lot. He gave me absolute freedom over the topic and contents of my thesis, which
made writing my master thesis a refreshing and challenging experience.

I would also like to thank Senka Krivic for providing me with as many datasets and example
tasks as I wanted, and Roswitha Kathrein for proofreading my thesis.

Finally, I must express my gratitude to my family and my girlfriend without whose uncondi-
tional support this thesis never would have been completed.

Thank you!

v

vi

Contents

Abstract iii

Acknowledgments v

Contents vii

Nomenclature xi

List of Figures xv

List of Tables xvii

Declaration xix

1 Introduction 1

2 Machine Learning 3
2.1 Background . 3

2.1.1 Types of Problems and Tasks . 3
2.1.2 The Missing Value Problem . 3
2.1.3 The Learning Task . 4

2.2 Learning Algorithms . 6
2.2.1 Linear Classification . 6
2.2.2 Feature Space and Hypothesis Space . 9
2.2.3 Learning Linear Classifiers . 12
2.2.4 Linear Regression . 13

2.3 Risk Minimization . 17
2.3.1 Empirical Risk Minimization . 18
2.3.2 Regularization . 20

2.4 The Support Vector Machine . 21
2.4.1 Linearly Separable Case . 22
2.4.2 Non-linearly Separable Case . 22
2.4.3 Solving the Constrained Optimization Problem 23

Appendix 29
2.A Constrained Optimization . 29

2.A.1 The Problem . 29
2.A.2 The Lagrangian Function . 29
2.A.3 The Lagrangian dual function . 30
2.A.4 Linear approximation interpretation . 30

vii

2.A.5 Weak and Strong Duality . 31
2.A.6 Karush-Kuhn-Tucker Optimality Conditions 32

3 Kernel Methods 33
3.1 Motivation . 33
3.2 The Kernel Trick . 35

3.2.1 When Can the Kernel Trick Be Applied? . 35
3.2.2 Summary and Outlook . 39

4 A Glance at Kernel Theory 41
4.1 Terminology - Kernel . 41
4.2 Reproducing Kernel Hilbert Spaces (RKHS) . 41

4.2.1 Outline . 41
4.2.2 Recap & Important Properties of Hilbert Spaces 42
4.2.3 Functional Analysis perspective . 47
4.2.4 Positive Definite Kernels . 49
4.2.5 Feature Space Mappings . 52
4.2.6 Mercer Theorem - a Fourth View . 55

4.3 RKHS and Regularized Risk Minimization . 56

5 Structured Output Learning 59
5.1 Introduction . 59
5.2 Background . 60

5.2.1 The Intuitive Approach . 60
5.2.2 The General Approach . 61
5.2.3 Learning with Joint Feature Maps . 62
5.2.4 Designing Joint Kernels . 63

5.3 Structured Support Vector Machine . 64
5.3.1 Linearly Separable Case . 64
5.3.2 Non-linearly Separable Case . 66
5.3.3 Arbitrary Loss Function . 66
5.3.4 Simplifications . 68

5.4 Maximum Margin Regression . 69
5.4.1 Problem Formulation . 69
5.4.2 Kernel Version . 70

Appendix 75
5.A The Tensor Product . 75

6 Structured Object Imputation 77
6.1 Introduction . 77
6.2 Background . 78

6.2.1 Problem Statement . 78
6.2.2 Intuitive Approach . 79
6.2.3 Relational Learning Perspective . 79
6.2.4 Feature Representation . 80

6.3 Relational Learning Using MMR . 81
6.3.1 Problem Formulation . 81
6.3.2 Kernel Version . 82
6.3.3 Solving the Optimization Problem Using Frank-Wolfe 83

viii

6.4 Maximum Margin Multi Valued Mappings (MMMVM) 87
6.4.1 Notation . 87
6.4.2 Defining the Swarm of Learners . 88
6.4.3 Kernel Version . 89
6.4.4 Solving the Optimization Problem Using Frank-Wolfe 91

6.5 Application Example - Missing Edges in Multiplex Networks 94
6.5.1 Details about the Dataset . 94
6.5.2 Application of the MMR & MMMVM . 94
6.5.3 Experimental Setup and Results . 96

Appendix 99
6.A The Frank-Wolfe Algorithm . 99

6.A.1 Problem Statement . 99
6.A.2 Algorithm . 99
6.A.3 Computational Complexity . 100

7 Conclusion 101

Bibliography 103

ix

x

Nomenclature

⟨⋅, ⋅⟩H inner product in corresponding to the Hilbert space H

⟨⋅, ⋅⟩Frobenius the Frobenius inner product

γ(w) the generalization of the SVM margin to the structured-output case

d̂(w,X) the margin of the hyperplane parametrized by w with respect to the set of points
X ⊂ H, where H is a Hilbert space

H′ the topological dual space of a Hilbert space H, which contains linear and continuous
forms

Hφ Hilbert space corresponding to the feature space mapping φ

S� orthogonal complement of a subspace S of a Hilbert space

V ⊗W the tensor product of the vector spaces V and W

X input space

Y output space

Z input-output space

A learning algorithm

Cw a compatibility function that measures the compatibility of elements of different sets,
parametrized by w

H hypothesis space

Hφ ∶= {g ∶ X → R ∶ g = f ○ φ, f ∈ H∗
φ and feature space mapping φ}

Hk ∶= {g ∶ X → R ∶ g = ∑ni=1 αik(xi, ⋅), for n ∈ N, x1, . . . , xn ∈ X , α1, . . . αn ∈ R and k is a kernel function}

L2(M) the space of square-integrable functions defined on the setM

z training sample

∇f the gradient of the function f

φ(⋅) feature space mapping

φ(x) feature vector of input point x

φi(x) i-th feature of the feature vector of input point x

xi

Br(x) open ball with radius r around x

c(⋅, ⋅) loss function

c01(⋅, ⋅) zero one loss function

chinge the hinge loss function

csq(⋅, ⋅) squared loss function

J a joint kernel function defined on the Cartesian product of several sets

kX positive definite kernel function defined on the set X

l2(K) the space of square-summable sequences over the field K

Lx the evaluation functional over a Hilbert space of functions H for the point x ∈ X

R[⋅] risk functional

Remp[⋅; z] empirical risk functional with respect to the sample z

Rreg[⋅; z] regularized empirical risk functional with respect to the sample z

v ⊗w the tensor product of the vectors v and w

y∗(x) the solution of the pre-image problem of a structured-output method for the point x

Linear Algebra

⟨⋅, ⋅⟩ inner product

H Hilbert space

P(w,b) affine hyperplane parametrized by normal vector w and bias b

d(w,b)(x) signed distance between point x and hyperplane P(w,b)

DH(⋅, ⋅) the metric induced by the inner product in H

Probability Theory

∫ ⋅dµ Lebesgue integral with respect to the measure µ

E(X ,Y)[⋅] expected value of a function with respect to the joint input-output probability distri-
bution

P(X ,Y) joint probability distribution on X ×Y

PX a probability measure on X such that the triple (X ,X ,PX) is a probability space

PZ joint probability distribution on X ×Y

Abbreviations

i.i.d. independently and identically distributed

MMMVM Maximum Margin Multi Valued Mappings

MMR Maximum Margin Regression

xii

p.d. kernel positive definite kernel

r.k. reproducing kernel

RKHS reproducing kernel Hilbert space

SVM Support Vector Machine

xiii

xiv

List of Figures

2.1 An overview of the different learning problems. 4
2.2 Classification of non-linearly separable data by choosing non-linear basis func-

tions. Figure (a) depicts the training sample in the input space, clearly the
sample is not linearly separable. Figure (b) depicts feature vectors of the data
points, computed by φ ∶ R2 → R3 ∶ (x, y) ↦ (x2,

√
2xy, y2), and a separating hy-

perplane. In Figure (c) the image of R2 under φ φ(R2) ⊂ R3 is visualized by the
yellow cone. Considering planes in R3 corresponds to considering conic sections
in R2. The conic section corresponding to the separating hyperplane in Figure
(b) is the blue ellipse in Figure (a) and (c). 11

2.3 Linear regression using a line. In the upper left corner there is the training data,
in the upper right corner the minimizer of the least squares error (red) and in the
lower left corner there is the function (blue) used to generate the training data.
The training data was generated by evaluating a polynomial function and adding
Gaussian noise. 16

2.4 Linear regression using polynomials of increasing degree (red). The training data
points (green) were generated by evaluating a polynomial function (blue) and
adding Gaussian noise. 25

2.5 Linear regression using polynomials of degree 15 (red). The training data points
(green) were generated by evaluating a polynomial function (blue) and adding
Gaussian noise. The only difference between the training data in the left figure
and in the right figure is that the point indicated as a dot in both figures doesn’t
correspond. 26

2.6 Ridge regression using polynomials of degree 15 (red) with different trade-off
parameters λ. The training data points (green) were generated by evaluating a
polynomial function (blue) and adding Gaussian noise. 27

2.7 Several elements of the version space are illustrated in different colors. All of
them minimize the empirical risk with the zero-one loss, however intuitively we
would tend to choose a hypothesis similar to the red, blue or purple one. The
red line is the one that satisfies the maximum margin property. The illustration
is derived from an illustration by Yifan. 28

2.8 The hyperplane with the maximum margin in a two dimensional example. In
two dimensions the hyperplane corresponds to a line. For simplicity reasons the
feature space mapping φ(x) = (x,1)′ and the weight vector ŵ = (w, b)′ resulting
in ⟨(ŵ, φ(x))⟩ = wx + b are used. The dotted lines illustrate the boundaries of
the margin, which are set to one and minus one, respectively. The illustration is
taken from Yifan. 28

4.1 Different perspectives on reproducing kernel Hilbert spaces. 42

5.1 The changes in the optimization problem from SVM to MMR. 70

xv

6.1 The missing value problem. 78
6.2 The missing value problem can be transformed into multiple supervised learning

problems by learning one function per missing data pattern. 79
6.3 Reinterpretation of the table. A table can be interpreted as the observation of a

relation between elements of two sets. 79
6.4 Content based and relational features illustrated in the example of a movie rec-

ommendation system. The rows correspond to movies and the columns to users.
Every user is characterized by content based features like age or gender and by
relational features like the set of ratings made by the user. Movies are character-
ized analogously, for every movie there are content based features like the genre
or subgenre of the movie and relational features like the set of ratings obtained
by the movie. 81

6.1 A layer-wise depiction of a subset of the multiplex network. The red circles
correspond to objects and colored edges to different interaction types. 95

6.2 Relational MMR and MMMVM were evaluated on different fractions of observed
data using various kernels. The blue line corresponds to the relational MMR
using polynomial kernels, the green line to the relational MMR using radial basis
function kernels, the red line to the MMMVM using polynomial kernels, the light
blue line to the MMMVM using radial basis function kernels and the pink line to
a ”most frequent value”-imputation. The error bars depict the standard deviation
over five repetitions of randomly splitting the data. 97

xvi

List of Tables

2.1 Types of learning problems based on the structure of the output space. 6

5.1 Some output kernels derived from loss functions. Note that in the ”arbitrary”
case the coefficients must satisfy ∑i ci = 1. 64

xvii

xviii

Declaration

By my own signature I declare that I produced this work as the sole author, working indepen-
dently, and that I did not use any sources and aids other than those referenced in the text.
All passages borrowed from external sources, verbatim or by content, are explicitly identified as
such.

Signed: .Date: .

xix

xx

Chapter 1

Introduction

In the age of multimedia machine learning has gained popularity, the internet is flooded by
data such as images, movies and texts. Despite the flood of data, knowledge still presents a
scarce resource. In a certain sense, machine learning aims at closing the gap between data
and knowledge. Informally, one could define machine learning as the process of finding ways to
understand data, which is in most cases coupled to a task. In this context, the knowledge or
the understanding of the data is usually modeled as a function and the task is used to define
a performance measure. Therefore, given data and a task, the objective of a machine learning
algorithm is to find a function that optimally solves the task with respect to a performance
measure. Additionally, the learned function should improve - with respect to the performance
measure - with an increasing amount of data available and be able to generalize to unseen data.
This definition of machine learning is consistent with the one of Mitchell (1997).

Depending on the type of data and the performance measure three broad categories are
distinguished: supervised, unsupervised and reinforcement learning (Bishop, 2006). This thesis
is mainly concerned with supervised learning. In supervised learning tasks the objective is to
find a functional relationship connecting elements of an input set with elements of an output
set, based on a given training sample comprised by input/output pairs. Typical supervised
learning tasks are classification and regression, where the input space is an arbitrary set and
the output spaces are a discrete set and a metric space (e.g. the real numbers) respectively. If
the output space also is a more or less arbitrary set comprised by complex (structured) objects,
then according to Bakir et al. (2007), Tsochantaridis et al. (2005b), Nowozin and Lampert (2011)
and Weston et al. (2007) we talk about structured output learning. Related to the high costs
of extensive labeling of large datasets it is of interest to also consider training samples with
incomplete labeling, i.e. for some input objects the corresponding output objects are unknown.
In that situation we talk about weakly supervised learning. One can go even further and omit
the distinction between input and output space and learn relations between an arbitrary number
of sets, which leads us to the missing value problem (Little and Rubin, 1986).

Without much effort it is observable that supervised learning problems can always be cast
as weakly supervised learning problems, which can be always cast as missing value problems.
Therefore, if the missing value problem was solved, the weakly supervised and the supervised
learning problem would be solved as well. If all variables lived in a field, e.g. the real numbers, we
would talk about the matrix completion problem. Unfortunately, according to Johnson (1990),
the matrix completion problem and consequently the missing value problem are not solvable
without further assumptions.

The goal of this thesis is to incrementally develop a framework that is capable of solving the
missing value problem under certain assumptions. In order to do so, we first study classification
and regression tasks in Chapter 2 and show a possible solution by risk minimization using

1

2 CHAPTER 1. INTRODUCTION

suitable input representations, i.e. Hilbert spaces. Secondly, we show that a certain class of
hypothesis spaces – more precisely, reproducing kernel Hilbert spaces of real valued functions
– can be used implicitly and efficiently by considering so-called kernel functions in Chapters 3
and 4. In Chapter 5 all the previously introduced concepts are combined in order to address
the structured output learning task. Chapter 6 illuminates the missing value problem from the
relation learning perspective and concludes with a framework capable of addressing the missing
value problem, which is demonstrated by its application on an affordance learning dataset.
Eventually, Chapter 7 is going to present the conclusion of the thesis.

Chapter 2

Machine Learning

In this chapter the fundamentals of machine learning required to understand the remaining
thesis are introduced. For a more extensive overview please have a look at Bishop (2006) and
for a more specific self-contained introduction please have a look Herbrich (2001). This chapter
is largely based on Herbrich (2001).

2.1 Background
As machine learning is a broad field, in which many research areas overlap, this section will
briefly summarize the basic concepts and notations relevant for this thesis.

2.1.1 Types of Problems and Tasks

Machine learning problems are classified into three broad categories by means of the data avail-
able and in terms of the nature of the feedback signal, namely:

• Supervised learning: Given a sample of input-output pairs, the objective is to find a
function mapping any input to an output in order to minimize the disagreement with
future input/output observations. The inputs could for instance be images of certain
objects and the outputs the class labels of the objects depicted.

• Unsupervised learning: Given data sample, the objective is to find the structure underlying
the data which for instance could be captured by the probability distribution of the data
or simply a more compact representation of the data.

• Reinforcement learning: Given a situation, the objective is to find the best action in order
to reach a certain goal. In contrast to the supervised learning task, here the optimal action
is not available during the training phase. Instead, the learner has to gain information
about the quality of actions by the rewards it gets. There are many ways to design
different reward functions - particularly, it is not necessary that every action is rewarded
individually. To incorporate a variety of reward functions it is common practice to choose
the actions that maximize the expected value of the reward function.

Despite the fact that the objectives of the different learning categories seem different at first
glance, the underlying task in all of them is to generalize from data.

2.1.2 The Missing Value Problem

Due to the fact that in some cases it is costly to obtain a large sample of annotated data points, it
makes sense to consider learning problems that contain data points with missing output values,

3

4 CHAPTER 2. MACHINE LEARNING

which are referred to as semi-supervised learning problems. When working with real life data
sets it can make sense to even go further and consider a more general type of learning problems.
In a more general case the training data could be composed by objects, for which different
observations exist. However, for individual objects some of the observations might be missing.
This type of learning problem can be considered as a missing value problem, where the data is
given in the form of a table, with rows that correspond to objects and columns that correspond
to certain observations of the objects. The goal is to infer the missing entries of the table.

Figure 2.1 summarizes the differences between the mentioned learning problems. It is ob-
servable that the supervised learning problem can be cast as a special case of the semi-supervised
learning problem and that the semi-supervised learning problem can be cast as a special case
of the missing value problem. Another important specialization of the missing value problem is
the matrix completion problem, where the goal is to recover the missing entries of a partially
given matrix. In contrast to the missing value problem in which the entries of the table live in
arbitrary sets, in the matrix completion problem the entries are typically assumed to be real
numbers. The probably most popular example concerning applications relying on the solution of
the matrix completion problem are recommender systems, in which the goal is to predict missing
ratings in a partially given user-item matrix, for an introduction to recommender systems see
Jannach et al. (2010).

This work will be ultimately concerned with the missing value problem which is not solvable
in its general version. Fortunately, under certain assumptions about the nature of the missing
entries of the table they can be restored. In order to understand the problem properly, it is
helpful to study the special cases first.

Semi-
Supervised supervised Matrix completion

learning schemes

Training

x1 y1
x2 y2
⋮ ⋮
xm ym

x1 y1
x2 y2
⋮ ⋮
xm ∅

z1
1 ∅ z3

1 z4
1

z1
2 z2

2 ∅ z4
2

⋮ ⋮ ⋮ ⋮
∅ z2

m z3
m z4

m

Test

x1 ∅
x2 ∅
⋮ ⋮
xm ∅

x1 ∅
x2 ∅
⋮ ⋮
xm ∅

z1
1 z2

1 ∅ z4
1

∅ z2
2 z3

2 z4
2

⋮ ⋮ ⋮ ⋮
z1
m ∅ z3

m ∅

Figure 2.1: An overview of the different learning problems.

2.1.3 The Learning Task

In the following we will be concerned with the supervised learning problem as we plan to gen-
eralize with respect to the missing value problem once we fully understand its specializations.
Recall that the supervised learning problem can be formulated as a special case of the missing
value problem. In the supervised learning task the goal is to discover a functional relationship
between two sets, typically referred to as input space X and output space Y.

Definition 1. (Input-Output space) We call

• X the input space,

2.1. BACKGROUND 5

• Y the output space,

• Z ∶= X × Y the joint input-output space

of the learning problem.

The learning of a relationship between inputs and outputs is based on the realization of
a sample of several input-output pairs, which are assumed to be drawn independently and
identically distributed (i.i.d.) from an unknown probability distribution. In machine learning
literature the realization of the sample is often directly referred to as the sample. Therefore, we
will stick to this terminology unless the context suggests the more precise statistical terminology.

Definition 2. (Training sample) Given an input-output space Z and a probability measure PZ
over Z, we call the m-tuple

z ∶= (z1, . . . , zm) ∈ Zm, (2.1)
drawn i.i.d. from PZ , a training sample of size m. Additionally we call the pairs zi = (xi, yi)
for i ∈ {1, . . . ,m} training examples and define x as (x1, . . . , xm) and y as (y1, . . . , ym). We use
z and (x,y) exchangeable.

To sum up, based on a training sample we aim to learn a functional relation between input
and output space. Theoretically, this relation could be any function. Unfortunately, considering
all possible functions from X to Y would result in an infeasible optimization problem, because
YX is simply too large. Therefore, typically only a subspace of YX , a so-called hypothesis space,
is considered.

Definition 3. (Function space) Let YX denote the set containing all functions from X to Y

YX ∶= {f ∣f ∶ X → Y}. (2.2)

A subset K
K ⊆ YX (2.3)

of YX is called function space. The reason for this nomenclature originates from the fact that
in many applications the subset of functions is a topological space, a vector space or both. For
example when Y is a field YX is a vector space.

Definition 4. (Hypothesis space) The function space

H ⊆ YX , (2.4)

that is considered when solving an optimization problem, is called hypothesis space and an ele-
ment h ∈ H is called hypothesis.

The above definitions allow for a formulation of a more concise definition of the learning
problem:

Definition 5. (Learning problem) Given an input space X , an output space Y, a training
sample z = (x,y) = ((x1, y1), . . . , (xm, ym)) ∈ (X × Y)m of size m ∈ N drawn i.i.d. from an
unknown distribution PZ and a hypothesis space H , the learning problem is to find the unknown
functional relation h ∶ X → Y ∈ H between objects x ∈ X and targets y ∈ Y based on the training
sample. Depending on the structure of the output space different types of learning problems are
distinguished, see Table 2.1 for an overview.

At this point we did not introduce a methodology to evaluate the quality of a given hypothe-
sis. However, in order to address the learning problem from an optimization point of view this is
mandatory. In the next section of this chapter we are going to study classical machine learning
problems in order to get an intuition about evaluating the quality of given hypotheses.

6 CHAPTER 2. MACHINE LEARNING

Output space Y Type
finite set classification learning
ordered space preference learning
metric space function learning
contains structured objects structured output learning

Table 2.1: Types of learning problems based on the structure of the output space.

2.2 Learning Algorithms

A learning algorithm is an algorithm that is intended to solve a learning problem by utilizing
data. Additionally, learning algorithms should perform the better the more data is available.
The objective of a learning algorithm is the selection of a function from the hypothesis space.

Definition 6. (Learning algorithm) Given an input space X , an output space Y and a hypothesis
space H ⊆ YX , a learning algorithm A is a mapping

A ∶
∞

⋃
n=1

(X × Y)n →H . (2.5)

So far, it is not clear how the selection of an element of the hypothesis space is performed,
however, it is obvious that for a proper selection a quality measure is required. The quality
measure is typically partially imposed by the task and partially a design choice. A closer look
at the classification and regression problem leads to the analysis of the connection between task
and quality measure.

2.2.1 Linear Classification

In this section the basics of linear classifiers will be introduced and their relevance illustrated in
an example.

Binary Classification

The simplest classification problem is the binary classification problem. In the following, let V
be a Euclidean vector space over the field of real numbers.

Definition 7. (Binary classification problem) Given a sample z = (x,y) = ((x1, y1), . . . , (xm, ym)) ∈
(X × Y)m of size m ∈ N, where the inputs xi ∈ X are elements of an arbitrary set and the
target values yi ∈ {−1,1} correspond to binary class labels, the objective is to find a function
f ∶ X → Y ∈ YX , that for any x ∈ X assigns the corresponding class label.

If the input space X is a Euclidean vector space, the binary classification problem might be
addressed by looking for hyperplanes.

Definition 8. (Linear hyperplane) A linear hyperplane in a d-dimensional vector space V is a
linear subspace of dimension d − 1 and is characterized by

Pw ∶= {x ∈ V ∶ ⟨w,x⟩ = 0} for w ∈ V,

where w ∈ V and x ∈ V a d-dimensional vectors and w is referred to as a normal vector of the
linear hyperplane.

2.2. LEARNING ALGORITHMS 7

Definition 9. (Affine hyperplane) An affine hyperplane in a d-dimensional vector space V is
an affine subspace of dimension d − 1 and is characterized by

P(w,b) ∶= {x ∈ V ∶ ⟨w,x⟩ = b} for w ∈ V,

where w ∈ V and x ∈ V a d-dimensional vectors and w is referred to as a normal vector of the
affine hyperplane.

In the machine learning literature it frequently occurs that affine hyperplanes are referred
to as linear hyperplanes.

Remark 10. (Distance from a point to a hyperplane) The signed distance between a point
v ∈ V and a hyperplane P(w,b) is given by the length of the projection of a vector from any point
x0 ∈ P(w,b) to v, given by v − x0, onto the normal vector of the hyperplane w

d(w,b) ∶ V → R ∶ x↦ ⟨w,x⟩ − b
∥w∥2

. (2.6)

Every hyperplane naturally separates its corresponding vector space into two subspaces.

Remark 11. (Half-spaces) In a vector space V over the field of real numbers an affine hyperplane
Pw separates the space into two half-spaces, which are given by

V+ ∶= {x ∈ V ∶ ⟨w,x⟩ > b}

and
V− ∶= {x ∈ V ∶ ⟨w,x⟩ < b} ,

where w,x ∈ V and b ∈ R. A hyperplane separating two classes in a classification scenario is
called separating hyperplane.

Therefore, to define a linear classifier it is sufficient to find a hyperplane that separates the
input space, in such a way that one half contains all the data points with class label one and
the other half contains all data points with label minus one.

Definition 12. (Binary linear classifier) Given an affine hyperplane P(w,b) ⊂ V a binary linear
classifier h ∶ V → {−1,1} can be obtained by considering

h(x) ∶= sign(⟨w,x⟩ − b) for x ∈ X ,

which is equal to one if x ∈ V+ and minus one if x ∈ V−.

If a hyperplane that agrees with the data sample exists, the sample will be linearly separable.

Definition 13. (Linear separability) Let X be a Euclidean vector space. A data-set z = (x,y) ∈
(X × {−1,1})m is called linearly separable if a linear classifier h exists that satisfies

{(x, y) ∈ z ∶ h(x) ≠ y} = ∅.

Meaning that it correctly classifies each item of the training set.

8 CHAPTER 2. MACHINE LEARNING

Multi-class Classification

After having introduced binary linear classifiers, we new have the tools to address the binary
classification task. However, in practice often more than two classes are of interest.

Definition 14. (Multi-class classification problem) Given a sample z = (x,y) = ((x1, y1), . . . , (xm, ym)) ∈
(X × Y)m of size m ∈ N, where the inputs xi ∈ X can have arbitrary structure and the target
values yi ∈ {1, . . . , k} correspond to class labels, the objective is to find a function f ∶ X → Y ∈ YX
that for a x ∈ X assigns the corresponding class label y ∈ Y.

In the following example we will motivate the choice of linear classifiers and introduce one
way to address the multi-class classification problem.

Example 15. (Classification learning example) Given a sample (x,y) = ((x1, y1), . . . , (xm, ym))
of object-label pairs, where Y = {1, . . . , k}, we are looking for a function h ∶ X → Y that assigns a
class label y ∈ Y to an object x ∈ X . Ideally, h should assign identical class labels to objects that
are very similar. When talking about similarity between objects, it is useful to work with metric
spaces. In this example X is assumed to be a Euclidean vector space. Arbitrary input spaces
can be handled by mapping them into metric spaces. One simple classifier showing the desired
behavior is the nearest neighbor classifier

hNN ∶ X → Y ∶ x↦ ynn, where nn = arg min
i∈{1,...,m}

∥x − xi∥, (2.7)

which assigns the label of the closest training point to the point of interest. Unfortunately using
a nearest neighbor classifier requires the storage of the whole training set, which can require a
significant amount of storage. Therefore, it would be favorable to use a parametric function to
model the classifier in order to overcome this drawback. The simplest parametric functions with
the desired behavior are linear ones

f(⋅;w) ∶ X → R ∶ x↦ ⟨w,x⟩ = w′x. (2.8)

The fact that linear functions map similar points to similar function values can be easily derived
by considering

∣f(x) − f(x̂)∣ = ∣ ⟨w,x⟩ − ⟨w, x̂⟩ ∣
= ∣ ⟨w,x − x̂⟩ ∣
≤ ∥w∥∥x − x̂∥,

where the last inequality is the Cauchy-Schwarz inequality. The difference between the function
values evaluated at two points is proportional to the distance between the points with the constant
factor ∥w∥. A linear binary classifier can be obtained by taking the sign of a linear function

hlin(⋅;w) ∶ X → Y ∶ x↦ sign(f(x;w)).

In order to build a classifier for more than two classes, as required in our case, a simple construc-
tion is to first learn k 1-vs-all classifiers h1, . . . , hk, where a positive sign of hi(x) corresponds
to "x is member of class i". The linear functions learned can be used to construct a multiclass
classifier

hmulti ∶ X → Y ∶ x↦ arg max
i∈{1,...,k}

fi(x).

Therefore, using parametric linear classifiers enables to drastically reduce the amount of storage
instead of storing the whole training set. That way, only the storage of k parameter vectors is
required, while the property that similar points are mapped to similar class labels is preserved.

In Chapter 5, a more sophisticated learning framework with the ability to address the multi-
class classification problem is introduced.

2.2. LEARNING ALGORITHMS 9

2.2.2 Feature Space and Hypothesis Space

Unfortunately, real world problems are often more complex. This occurs, for instance, when
the data is not linearly separable in the input space or when the input space X is an arbitrary
set without the notion of an inner product and the other nice properties of Euclidean vector
spaces. When working with not linearly separable data the classifiers introduced so far are
likely to perform poorly. Even more so, if X is an arbitrary set they might not be able to be
used directly. Therefore, it is common to map the input space to a Euclidean space or - more
generally - to a Hilbert space. In a Hilbert space, we have an inner product and therefore are
able to work with linear forms the same way we did in Euclidean vector spaces.

Definition 16. (Hilbert space) A Hilbert space is a vector space H over the field K together
with an inner product ⟨⋅, ⋅⟩ ∶ H ×H → K that for all x, y, z ∈ H and a ∈ K satisfies

1. Conjugate symmetry:
⟨x, y⟩ = ⟨y, x⟩

2. Linearity in the first argument:

⟨ax, y⟩ = a ⟨x, y⟩ and ⟨x + y, z⟩ = ⟨x, z⟩ + ⟨y, z⟩

3. Positive-definiteness:
⟨x,x⟩ ≥ 0 and ⟨x,x⟩ = 0⇒ x = 0.

Note that if K = R conjugate symmetry is equivalent to symmetry. Thus, the linearity in the
first argument implies bilinearity. Additionally a Hilbert space H is a complete metric space with
respect to the metric DH induced by the inner product

DH ∶ H ×H → [0,∞) ∶ (x, y) ↦ ∥x − y∥ ∶=
√

⟨x − y, x − y⟩. (2.9)

We don’t need the concept of completeness in the scope of this chapter, but it will be detailed in
Chapter 4.

Furthermore, the notion of Hilbert spaces allows us to consider diverse hypothesis spaces
that are easy to handle, for example the space of polynomials.

Definition 17. (Basis function) A basis function is an element of a basis of a function space.
Analogously to the representations of vectors in a vector space in terms of a linear combination of
basis vectors, it is possible to represent every function in a function space by a linear combination
of the basis functions of that space.

It is not trivially possible to work with arbitrary shaped data points; still, one way to do so
is to perform a mapping of the data into a Hilbert space, referred to as feature space.

Definition 18. (Feature space mapping) We call a mapping φ from the input space X to a
Hilbert space Hφ a feature space mapping and Hφ a feature space. One way of defining such a
mapping is using a set of basis functions φ1, . . . , φi, . . . resulting in

φ ∶ X → Hφ ∶ x↦ (φ1(x), . . . , φi(x), . . .)′. (2.10)

The feature space can be infinite dimensional which is indicated by the dots (φ1(x), . . . , φi(x), . . .).
The image φ(x) of an input x ∈ X under φ is often referred to as feature vector, of which the
components are called features. The term basis function for the component functions of the fea-
ture space mapping relates to the fact, that the dual space of the feature space, namely the space
of linear forms f ∶ Hφ → R, is isomorphic to the function space spanned by the basis functions. A
linear form in the feature space corresponds to a possibly nonlinear function in the input space.

10 CHAPTER 2. MACHINE LEARNING

Remark 19. (A new hypothesis space) Feature space mappings allow us to work with a powerful
family hypothesis spaces, namely the ones obtained by considering linear forms from feature
spaces to R

H∗
φ = {f ∶ Hφ → R ∶ f is linear}. (2.11)

By the composition of the corresponding feature space mapping and those linear forms we obtain
a hypothesis space of possibly non-linear functions

H = {g ∶ X → R ∶ g = f ○ φ, f ∈ H∗
φ and feature space mapping φ}. (2.12)

Remark 20. (Convenient notation) Additionally, the notion of feature space mapping allows
us to omit the bias term when working with linear models, since it can be assumed that one
of the basis functions φi is equal to one. Therefore, ⟨w,x⟩ − b can be written as ⟨⟨ŵ, φ(x)⟩⟩,
where ŵ ∶= (w′,−b)′ is the concatenation of the old parameter vector w and the bias term and
φ(x) ∶= (x,1)′.

Non-linearly Separable Data

If the input space X is already a Hilbert space but the given data is not linearly separable, it
is possible to improve the separability of the data by wisely choosing a feature mapping. Recall
that binary linear classifiers were obtained by considering the signs of linear forms on the input
space.

After finding a mapping from the input space to a Hilbert space φ ∶ X → Hφ it is possible to
define binary linear classifiers in exactly the same fashion

hw ∶ X → {−1,1} ∶ x↦ sign(⟨w,φ(x)⟩Hφ) where w ∈ Hφ.

The pre-image of the separating hyperplane Pw in the feature space under the feature map φ,
denoted by φ−1(Pw) corresponds to a non-linear decision surface or decision boundary in the
input space, where the non-linearity is determined by the choice of the basis functions of the
feature mapping.

Definition 21. (Decision surface) Given an input space X a feature map φ a binary linear
classifier hw and the corresponding separating hyperplane Pw ⊂ Hφ, then the pre-image of Pw
under the feature map φ

φ−1(Pw) = {x ∈ X ∶ φ(x) ∈ Pw}

= {x ∈ X ∶ ⟨w,φ(x)⟩Hφ = 0}
= {x ∈ X ∶ hw(x) = 0} ,

is referred to as decision surface or decision boundary.

The following example is intended to provide a basic idea about the way in which the choice
of basis functions affects the non-linearities used for classification.

Example 22. (Non-linear classification)
Figure 2.2 illustrates a situation as stated previously, where - in the input space - the two

classes of points cannot be separated by a linear function. However, they can be separated by
a nonlinear function, for example a circle with its center at (0,0) and a radius of length one.
This observation suggests to use quadratical monomials as non linear basis functions, the feature
space mapping given by

φ ∶ R2 → R3 ∶ (x, y) ↦ (x2,
√

2xy, y2) (2.13)

2.2. LEARNING ALGORITHMS 11

(a) Training sample in the input space. (b) Feature vectors in the feature space.

(c) The full feature space.

Figure 2.2: Classification of non-linearly separable data by choosing non-linear basis functions.
Figure (a) depicts the training sample in the input space, clearly the sample is not linearly
separable. Figure (b) depicts feature vectors of the data points, computed by φ ∶ R2 → R3 ∶
(x, y) ↦ (x2,

√
2xy, y2), and a separating hyperplane. In Figure (c) the image of R2 under φ

φ(R2) ⊂ R3 is visualized by the yellow cone. Considering planes in R3 corresponds to considering
conic sections in R2. The conic section corresponding to the separating hyperplane in Figure
(b) is the blue ellipse in Figure (a) and (c).

allows to linearly separate the mapped points. An important observation that we can make
by considering Figure 2.2 is that the non-linear basis functions chosen for the feature space
mapping directly influence the shape of the decision surface, i.e. the inverse image under φ
of the separating hyperplane, in the input space. For example, if second-degree polynomials
are chosen as basis functions the inverse image of the linear hyperplane in the feature space
will be a second-degree polynomial surface in the input space. Finding the best non-linear feature
mapping to separate the data can be difficult in practice, since a certain degree of prior knowledge
is required to support the choice of specific non-linearities. Consequently, it is a common practice
to determine an acceptable feature space mapping by trial and error.

Remark 23. (Hypothesis space for classification) When working with linear classifiers in feature
spaces, it is observable that the choice of feature space mapping directly affects the hypothesis
space. For a given feature space mapping

φ ∶ X → Hφ ∶ x↦ (φ1(x), . . . , φn(x))

12 CHAPTER 2. MACHINE LEARNING

the corresponding hypothesis space H ⊂ YX is

H = {h ∈ YX ∶ h(x) = sign(f(x)), x ∈ X , f ∈ H∗
φ}

= {h ∈ YX ∶ h(x) = sign(⟨w,φ(x)⟩), x ∈ X ,w ∈ Hφ}

= {h ∈ YX ∶ h(x) = sign(
n

∑
i=1
wiφi(x)), x ∈ X ,w ∈ Hφ} .

Arbitrary Input Space

If the only requirement for the input space X is to be a set it will - per definition - not be
possible to define a linear form which is a linear function from a vector space to its field of
scalars directly on the input space. Therefore, the mapping of the data into a Hilbert space is
required in order to work with linear forms or subsequently with linear classifiers. Since linear
classifiers are similarity based, one desired property for a feature space mapping φ ∶ X → Hφ is
that the images of similar objects under the feature mapping are close. If the only information
available about the input space is that it is a set, no notion of similarity in the input space will
exist. Therefore, in that case it is impossible to quantify the goodness of a corresponding feature
space mapping. Fortunately, the objects of interest in practice, for example images, texts, DNA
sequences, time series and so on, typically have certain additional structure that enables at least
an empirical notion of similarity between them. However, by now it should be observable that
the choice of a proper feature space mapping can be tricky.

Additionally, the interpretation of the basis functions φi as non-linearities that can enhance
classification performance cannot be used directly, instead the images of inputs x ∈ X under
the feature space mapping φ(x) should be thought of as representers of the inputs. In order to
resolve remaining unclarities consider the following example, in which the input space is not a
Hilbert space.

Example 24. (String classification) Let X = Σ∗ be the set of strings of arbitrary length over the
alphabet Σ, for more information about strings and substrings we refer to Hopcroft and Ullman
(1990). Obviously, Σ∗ is not a Hilbert space, therefore, in order to use linear classifiers it is
necessary to find a feature mapping φ from Σ∗ to Hφ. As stated above, it would be desirable if
similar strings get mapped to similar representations. Intuitively, two strings are similar if they
share common sub-strings. Motivated by that notion of similarity a natural choice of a basis
function would be an indicator function for a certain substring

φb ∶ Σ∗ → R ∶ v ↦
⎧⎪⎪⎨⎪⎪⎩

1, if v contains b
0, else

, where b ∈ Σ∗. (2.14)

Therefore, for a given lexicon (b1, . . . , bd) of substrings one possible feature space mapping with
the desired property could be

φ ∶ Σ∗ → Rd ∶ v ↦ (φb1 , . . . , φbd). (2.15)

Of course, there are more sophisticated ways to represent strings, as in Lodhi et al. (2002) where
a feature space generated by considering the number of occurrences of all subsequences of length
k weighted by their length is used.

2.2.3 Learning Linear Classifiers

After defining linear classifiers the only open question remaining is how to find the best one for
a given task. Ideally, for a given i.i.d. sample z = (x,y) = ((x1, y1), . . . , (xm, ym)) we would like

2.2. LEARNING ALGORITHMS 13

to find not just any classifier, but the best one. For the sake of simplicity let us consider the
binary classification scenario for now. Intuitively, it would make sense to consider the classifier
with the least miss-classifications as the best one. More generally, one could define different loss
functions, which are supposed to quantify the deviation between two elements of the output
space Y. Counting the amount of misclassifications corresponds to using the so-called zero-one
loss.

Definition 25. (Zero-one loss) The zero-one loss is defined as

c01 ∶ Y × Y → [0,∞) ∶ (ŷ, y) ↦
⎧⎪⎪⎨⎪⎪⎩

0 if y = ŷ
1 else

(2.16)

and assigns zero loss if y and ŷ are the same and one otherwise. It can be also written as an
indicator function c01(ŷ, y) = Iy≠ŷ.

In order to count the amount of misclassifications we need to evaluate the zero-one loss for
every training example and to sum up the results. After choosing a hypothesis space H , which
is typically chosen implicitly by choosing a feature space mapping φ, the binary classification
problem reduces to an optimization problem of the form

min ∑mi=1 c(yi, h(xi))
w.r.t. h ∈ H ,

(2.17)

or equivalently

min ∑mi=1 c(yi, sign(⟨w,φ(xi)⟩))
w.r.t. w ∈ Hφ.

(2.18)

The zero-one loss in the above optimization problem can be substituted with a different loss
function if required. A learning algorithm for the binary classification task would return the
minimizer h∗ ∈ H of the above optimization problem. The alert reader might have noticed,
that the optimal solution to this optimization problem is not necessarily unique especially when
using the zero-one loss and when the sample is separable in the feature space. In the separable
case the set of all classifiers that are consistent with the sample is referred to as version space.

Definition 26. (Version space) Given a training sample z = (x,y) ∈ (X ×Y)m and a hypothesis
space H the set

Vz ∶= {h ∈ H ∶ h(xi) = yi,∀i ∈ {1, . . . ,m}}

is called version space.

Later we will see that by making further assumptions it is possible to select the best solution
from the version space.

2.2.4 Linear Regression

In contrast to classification learning, where the output space has no structure, in function
learning the output space Y is a metric space. In simplest case the output space is the space of
real numbers Y = R and the task of finding the functional relationship between the input space
and R is called regression.

When considering only linear functions we talk about linear regression, again non-linearities
can be added by utilizing the notion of feature spaces. Therefore, strictly speaking the functions

14 CHAPTER 2. MACHINE LEARNING

of interest are only linear in the feature space. More precisely, given a feature space mapping
φ, the hypothesis space H is the space of linear forms from Hφ to R, also referred to as dual
space H∗

φ of Hφ. Traditionally, the loss function used for regression is the squared loss.

Definition 27. (Squared loss) The squared loss is defined as

csq ∶ Y × Y → [0,∞) ∶ (y, ŷ) ↦ ∥y − ŷ∥2
2,

where ∥x∥2
2 is defined as x2 for x ∈ R.

This particular choice of loss function can be motivated probabilistically. In the classical
regression model the i’th observation is assumed to have the following form

yi = wxi + b + εi, (2.19)

where i ∈ {1, . . . , n} and εi is the realization of a normally, independently and identically dis-
tributed sample E1, . . . ,En, with E[E1] = 0 and V ar[E1] = σ2. Therefore, the random variables
Yi = wxi + b +Ei are distributed normally Yi ∼ N(wxi + b, σ2) with the density

f(y;wxi − b, σ2) = 1√
2φσ2

exp(−1
2
(y −wxi − b

σ
)

2
) (2.20)

for i ∈ {1, . . . , n}. In statistics a common practice for parameter estimation is to maximize the
likelihood function. Since our random variables are independent the likelihood function L(w, b)
is

L(w, b) =
n

∏
i=1
f(yi;wxi − b, σ2)

=
⎛
⎝

1√
2φσ2

⎞
⎠

n

exp(
n

∑
i=1

−1
2
(yi −wxi − b

σ
)

2
) .

(2.21)

When working with normal distributions the maximization of the likelihood function can be
simplified by considering the logarithm of the likelihood function

ln(L(w, b)) = −n
2
ln(2πσ2) − 1

2σ2

n

∑
i=1

(yi −wxi − b)2 . (2.22)

The maximization of ln(L(w, b)) with respect to w and b is achieved, when the sum of squared
losses ∑ni=1 (yi −wxi − b)

2 is minimized. Therefore, after choosing a reasonable feature space Hφ,
the optimization problem to solve becomes

min ∑mi=1 csq(yi, ⟨w,φ(xi)⟩)
w.r.t. w ∈ Hφ.

(2.23)

Since the squared loss function is differentiable and convex, the sum of convex functions is
convex and the sum of differentiable functions is differentiable, a closed form solution for the
linear regression problem can be obtained by setting the derivative of the objective function to
zero.

Example 28. (Linear regression with a straight line) Let’s find the optimal weight vector for a
simple example, where X is R, Y is R and φ(x) = (1, x)′. Given an i.i.d. sample of observations
(xi, yi)mi=1 ∈ (R ×R)m, we are looking for the linear function that minimizes the sum of squares
error E

min
w∈Hφ

E(w1,w2) ∶=
1
2
m

∑
i=1

(w1 +w2xi − yi)2, (2.24)

2.2. LEARNING ALGORITHMS 15

where we added the factor 1
2 to make the solution prettier. Therefore, we set the derivatives of

the error function E with respect to w1

∂E

∂w1
(w1,w2) =

m

∑
i=1

(w1 +w2xi − yi) != 0 (2.25)

and to w2
∂E

∂w2
(w1,w2) =

m

∑
i=1

(w1 +w2xi − yi)xi != 0 (2.26)

to zero. From Equation 2.25 we obtain

w1 =
1
m

m

∑
i=1
yi −w2xi, (2.27)

by splitting up the sum into ∑mi=1w1 + ∑mi=1 (w2xi − yi) and solving for w1. Let’s denote the
average 1

mxi by x̄ and 1
myi by ȳ. Substituting Equation 2.27 into Equation 2.26, yields

0 =
m

∑
i=1

(ȳ −w2x̄ +w2xi − yi)xi

= w2
m

∑
i=1

(xi − x̄)xi +
m

∑
i=1

(ȳ − yi)xi,
(2.28)

which is equivalent to
w2 =

∑mi=1 (yi − ȳ)xi
∑mi=1 (xi − x̄)xi

. (2.29)

If our goal was only the determination of the optimal parameters we would be done here. How-
ever, with slight refinements of this expression a meaningful representation can be derived. In
order to do so, let us consider the enumerator and the denominator individually. The enumerator
can be rewritten by first adding and subtracting x̄yi to every summand

m

∑
i=1

(yixi − ȳxi) =
m

∑
i=1

(yixi − ȳxi − x̄yi + x̄yi). (2.30)

By pulling x̄ and ȳ out of the sums and utilizing x̄ = 1
mxi and ȳ =

1
myi

m

∑
i=1
yixi −mȳx̄ −mx̄ȳ +mx̄ȳ =

m

∑
i=1
yixi −

m

∑
i=1
ȳx̄ −

m

∑
i=1
x̄ȳ +

m

∑
i=1
x̄ȳ (2.31)

is obtained, which is equivalent to
m

∑
i=1

(yixi − ȳxi) =
m

∑
i=1

(xi − x̄)(yi − ȳ) (2.32)

Analogously the denominator can be transformed into ∑mi=1 (xi − x̄)2. Therefore we get the fol-
lowing expression for w2

w2 =
∑mi=1 (xi − x̄)(yi − ȳ)
∑mi=1 (xi − x̄)2 , (2.33)

which is closely related to the Pearson correlation, see Pearson (1895) for further details. The
expression in the enumerator of w2 is called empirical covariance, since the denominator is al-
ways positive, the empirical covariance alone determines the sign of the slope of the regression
line. Figure 2.3 shows the type of regression line we just derived in a toy example. The train-
ing data was generated by perturbing point evaluations of a polynomial function with normally
distributed noise in the target component. The Figure contains plots of the training data, the
regression line and also the ground truth polynomial.

16 CHAPTER 2. MACHINE LEARNING

−1 −0.5 0 0.5 1

0

2

4

6

8

X

Y

(a) Training data

−1 −0.5 0 0.5 1

0

2

4

6

8

X
Y

(b) Regression line

−1 −0.5 0 0.5 1

0

2

4

6

8

X

Y

(c) Ground truth

Figure 2.3: Linear regression using a line. In the upper left corner there is the training data, in
the upper right corner the minimizer of the least squares error (red) and in the lower left corner
there is the function (blue) used to generate the training data. The training data was generated
by evaluating a polynomial function and adding Gaussian noise.

It’s observable that the regression line in Figure 2.3 (b) does not look like a very good
estimate of the polynomial function. In order to fit the underlying polynomial function better
it could be beneficial to increase the degree of the regression polynomial that we want to fit.
Instead of a polynomial of degree one, which is a line, polynomials of arbitrary degree can be
utilized by adjusting the feature space mapping accordingly.

Example 29. (Linear regression with a polynomial) When X is R and Y is R like in the
previous example it is sufficient to change the feature mapping φ to

φ ∶ R→ R(n+1) ∶ x↦ (x0, x1, . . . , xn) (2.34)

2.3. RISK MINIMIZATION 17

in order to use polynomials of degree n. The resulting optimization problem is

min
w∈Hφ

E(w) ∶= 1
2
m

∑
i=1

(yi −
n

∑
j=0

wjx
j
i)

2 (2.35)

and can be solved analogously by setting the derivative with respect to w equal to zero. Figure 2.4
illustrates regression polynomials of different degrees. With an increasing degree the regression
polynomial converges closer and closer to the training points, in other words, the least squares
error becomes smaller the higher the degree of the regression polynomial gets. Nevertheless, the
deviation between ground truth and regression polynomials obviously increases with the degree of
the polynomials considered. This problem is called overfitting. In the next section we shall see
one possibility to deal with overfitting.

2.3 Risk Minimization
As we have seen in the classification and regression task, different trains of thoughts lead us
to almost identically looking optimization problems. Considering the resulting optimization
problems of both tasks, the only observable differences are to be found in the choice of hypothesis
space and loss functions. In this chapter we are going to introduce a framework that is capable
of handling all supervised learning problems, namely, the risk minimization framework. So far,
we have already worked with several loss functions without describing explicitly what a loss
function should look like in general. Clearly, it should be possible to interpret the loss function
as a measure of discrepancy in the output space. In further consequence, a loss function should
allow us to determine the quality of a prediction. The higher the value of the loss function
evaluated at a predicted output and the corresponding true output the worse the quality of the
prediction.

Definition 30. (Loss function) Let Y be the output space, then a loss function is a function
that assigns a positive real number to every pair of output values

c ∶ Y × Y → [0,∞) ∶ (ŷ, y) ↦ c(ŷ, y). (2.36)

We interpret the first input variable ŷ as the predicted value and the second as the true value.
The loss function is intended to measure the discrepancy between the predicted and the true
value. Therefore, for two elements ŷ, y ∈ Y the loss c(ŷ, y) should be zero if ŷ = y and greater
than zero otherwise.

Remark 31. (Practical loss function) Sometimes it makes sense to loosen the definition of loss
function in order to be more flexible in its design. For instance, in linear classification it might
be useful to consider the exact output of ⟨w,φ(x)⟩, which is proportional to the distance between
the separating hyperplane and the point of interest φ(x), instead of only its sign.

If PZ was known, the expected value of a cost function EZ[c(h(⋅), ⋅)] would be a meaningful
measurement for the overall risk of a given hypothesis h. This observation brings us to the
definition of a so-called risk functional.

Definition 32. (Risk functional) Given a loss function c ∶ Y×Y → [0,∞) and the joint probability
distribution PZ = P(X ,Y) of inputs and outputs, the risk functional is given by the expected value
of the loss function

R ∶ YX → [0,∞) ∶ f ↦ E(X ,Y)[c(f(⋅), ⋅)] = ∫
X×Y

c(f(x), y)dP(X ,Y)(x, y), (2.37)

18 CHAPTER 2. MACHINE LEARNING

where ∫ ⋅dµ denotes the Lebesgue integral with respect to the measure µ. In this case µ is defined
as the joint probability distribution of the input-output space P(X ,Y). For the construction and
properties of the Lebesgue integral we refer to Geiss and Geiss (2014). Note that for evaluations
of functionals we use square brackets R[f].

After choosing a hypothesis space and a cost function, learning reduces to an optimization
problem of the form

min R[h]
w.r.t. h ∈ H .

(2.38)

Unfortunately, this elegant approach is not directly applicable in most real world scenarios,
since the probability distribution of the data is typically unknown. Instead, the only information
available is an independent and identically distributed sample of the form ((x1, y1), . . . , (xm, ym)) ∈
(X × Y)m.

2.3.1 Empirical Risk Minimization

The question that demands to be answered now is how to estimate P(X ,Y) given an i.i.d. sample
((x1, y1), . . . , (xm, ym)) ∈ (X × Y)m. For simplicity reasons let’s assume that X ⊆ Rd and that
Y ⊆ Rk. If the sample is sufficiently large the obvious answer to that question will be to use the
empirical distribution

Pm(⋅; (x,y)) ∶ B(Rd ×Rk) → [0,1] ∶ (A,B) ↦ 1
m

m

∑
i=1
δ(xi,yi)(A,B), (2.39)

where

δ(x̂,ŷ)(A,B) =
⎧⎪⎪⎨⎪⎪⎩

1 if x̂ ∈ A and ŷ ∈ B
0 else

(2.40)

is a Dirac measure, (A,B) ∈ B(Rd ×Rk) are Borel sets, i.e. sets that can be formed from open
sets through countable unions and intersections, and B(Rd ×Rk) denotes the Borel σ-algebra of
Rd ×Rk, which is the smallest σ-algebra containing all open sets in Rd ×Rk.

According to the Glivenko-Cantelli theorem, see Glivenko and Cantelli (1933), the empirical
distribution converges to the real probability distribution with an increasing amount of sample
items almost certainly. The convergence towards the real probability distribution suggests that
for large training sets the empirical distribution is a good estimate of the real distribution, which
motivates the definition of the empirical risk functional. By estimating the joint probability
distribution with the empirical distribution, the integral of the cost function reduces to a sum
of cost function evaluations

Remp[f ; z] ∶= Em[c(f(⋅), ⋅)] = ∫
X×Y

c(f(x), y)dPm(x, y; (x,y))

= ∫
X×Y

c(f(x), y)d(1
m

m

∑
i=1
δ(xi,yi)(x, y)) (by definition of Pm)

= 1
m

m

∑
i=1
∫
X×Y

c(f(x), y)dδ(xi,yi)(x, y) (by definition of ∫)

= 1
m

m

∑
i=1
c(f(xi), yi) (property of the Dirac measure).

(2.41)
This leads to the following definition of the empirical risk functional.

2.3. RISK MINIMIZATION 19

Definition 33. (Empirical risk functional) Given a loss function c ∶ Y × Y → [0,∞) and a
training sample z ∈ (X × Y)m the empirical risk functional is given by

Remp[⋅; z] ∶ YX → [0,∞) ∶ f ↦ 1
m

m

∑
i=1
c(f(xi), yi). (2.42)

Therefore, in practice the learning problem leads to the following optimization problem

min Remp[h; z]
w.r.t. h ∈ H ,

(2.43)

which captures all classification and regression examples that we have seen so far. Unfor-
tunately, the empirical risk minimization problem is ill-posed when the hypothesis space H
is sufficiently large. Before we continue let’s have a brief look at Hadamard’s definition of
ill-posedness.
Definition 34. (Well-posed and ill-posed problems) Hadamard (1902) characterizes a mathe-
matical problem as well-posed if it satisfies the following properties:

• A solution exists

• The solution is unique

• The solution is stable, i.e. the solution’s behavior changes continuously with the initial
conditions.

Consequently, a mathematical problem is ill-posed if it is not well-posed.
In order to get an intuition about the meaning of ill-posed optimization problems please

recall the classification and polynomial regression example having been discussed earlier. The
optimization problem obtained in the binary classification example using the zero-one loss is
ill-posed because its solution is not unique. In the linearly separable case infinitely many sepa-
rating hyperplanes exist. In the polynomial regression example the solutions become unstable
when allowing polynomials of larger degrees, in between the training points they are wiggly
and at the training points very accurate, meaning that slight variations in z would result in
significantly different solutions of the optimization problem. Figure 2.5 highlights that issue, in
which polynomial regression was performed on two slightly different training sets.

Note that stability would be a particularly desirable property for a machine learning algo-
rithm, since in real world applications most measurements are perturbed. Using an unstable
algorithm the ability to generalize to unseen data is not given. The polynomials of lower de-
gree improved the stability of the optimization problem, meaning that the solutions behave
more smoothly between observations, see Figure 2.4. This observation suggests that there is a
connection between well-posedness and the ability to generalize.
Definition 35. (Generalization and consistency) According to Poggio et al. (2004) an algorithm
A will generalize if the function selected by it f∗ = A (z) satisfies for all training sets z of size
n and uniformly for any probability distribution µ

limn→∞∣R[f∗] −Remp[f∗,z]∣ = 0 in probability. (2.44)

Poggio et al. (2004) prove a necessary and sufficient condition for generalization, namely, if
the hypothesis space H is a uniform Glivenko-Cantelli class, the empirical risk minimization
will generalize. Without going into further details about this important theoretical result from
learning theory, for us the take-home message is that the empirical risk minimization is not
doomed to failure, as long as the hypothesis space is selected or restrained properly. The
hypothesis space can be restrained by adding a regularizing term to the objective function.

20 CHAPTER 2. MACHINE LEARNING

2.3.2 Regularization

If the hypothesis space in empirical risk minimization is sufficiently discriminative, an unavoid-
able problem that occurs is the problem of overfitting. In order to fully understand the magnitude
of this problem, think of a training sample of the following shape

((x1, y1), . . . , (xm, ym)) ∈ (R ×R)m with xi ≠ xj for i ≠ j ∈ {1, . . . ,m} . (2.45)

If the hypothesis space contains polynomials of degree m − 1, it will contain at least one func-
tion that minimizes every reasonable loss function evaluated at the training set, namely, the
interpolating polynomial given by the Lagrange formula

p(x) ∶=
m

∑
i=1
yi

m

∏
k=1,k≠i

x − xk
xi − xk

. (2.46)

However, polynomials of high degree are known to be rather poor interpolants in terms of their
behavior between interpolated points, where they are typically wiggly. Additionally, a small
change in the training sample can have a big impact on the interpolating function. Similarly,
if the hypothesis space is complex enough there will always be a minimizer strongly dependent
on the training sample. When doing interpolation one way around this is to consider more
sophisticated interpolation methods like the spline interpolation.

Another more practical way in machine learning is the method of regularization, i.e. to
constrain the solution to be less complex. Remember that in machine learning problems we
don’t want to interpolate, instead, we want to learn a function that generalizes to the whole
input space. When learning polynomials this would mean to prefer polynomials of smaller
degree. More generally, instead of minimizing the empirical risk functional, given by Equation
2.41, the regularized risk functional is minimized.

Definition 36. (Regularized risk functional) Given a hypothesis space H and a training sample
z ∈ (X × Y)m the regularized risk functional is given by

Rreg[.; z] ∶ H → [0,∞) ∶ f ↦ Remp[f ; z] + λΩ(∥f∥H),

where λ ∈ [0,∞) can be thought of as a trade-off parameter that controls the impact of the
regularization functional Ω○∥⋅∥H ∶ H → R, where Ω is a strictly monotonic increasing function.
The idea of the regularization is to restrict the space of solutions to a compact subset of the
hypothesis space. Therefore, the essential requirement for any regularization functional Ω is that
{f ∈ H ∶ Ω(∥f∥H) ≤ ε} ⊆ H is compact for each positive number ε > 0, see Herbrich (2001).
When using Ω(∥f∥H) = ∥f∥2

H we talk about the well-known Tikhonov regularization introduced
by Tikhonov and Arsenin (1977).

Resulting in the following optimization problem

min Rreg[f,z]
w.r.t. f ∈ H .

(2.47)

As a concluding example of this section the so-called Tikhonov regularization is applied to
the linear regression task using polynomial basis functions.

Example 37. (Regularized polynomial regression) Recall that despite decreasing the empirical
risk, increasing the degree of the regression polynomial resulted in rather poor regression polyno-
mials. When considering Figure 2.4 it is observable that with an increasing degree the regression

2.4. THE SUPPORT VECTOR MACHINE 21

polynomial wiggles between the training instances. Let’s examine how the extension of the ob-
jective function by a regularizing term affects the solution of the regression problem. Let X be
R, Y be R and the feature space mapping φ(x) be (1, x, x2, . . . , xd) like in the previous example.
Hypotheses can be represented by an inner product in the feature space fw(⋅) ∶= ⟨w, ⋅⟩. For re-
gression one of the most popular forms of regularization is the so-called Tikhonov regularization,
named after Tikhonov and Arsenin (1977), which is also known as ridge regression in statistics.
In Tikhonov regularization the regularizing term takes the form

Ω ○ ∥Γ ⋅ ∥2 ∶ H → [0,∞) ∶ fw ↦ ∥Γw∥2
2, (2.48)

where the squared Euclidean norm of the parameter vector w, transformed by the so-called
Tikhonov matrix Γ, is computed. Originally the Tikhonov regularization objective function takes
the following form

min 1
2 ∑

m
i=1 (yi − ⟨w,φ(xi)⟩) + ∥Γw∥2

2
w.r.t. fw ∈ H ,

(2.49)

where the squared loss is used as loss function and the regularizing term is simply added to the
expected risk. For the sake of simplicity we consider diagonal matrices of the form Γ = λId in this
example. This is referred to as l2-regularization in the literature. Using the absolute homogeneity
of the norm and considering only λ > 0 the objective function becomes

min 1
2 ∑

m
i=1 (yi −∑dj=0wjx

j
i)2 + λ∥w∥2

2
w.r.t. fw ∈ H ,

(2.50)

where the regularization term prefers weight vectors with low coefficients or in other words
polynomials of low degree. The factor λ can be thought of as a trade-off parameter, which steers
the amount of regularization. Obviously, the old objective function can be restored by setting λ = 0
and the larger λ becomes the less is the relevance of the training data. Figure 2.6 depicts how
different choices of lambda influence the solution of the optimization problem. It is observable
that the solutions obtained with reasonable choices of λ, - see Figure 2.6 (b) and (c) - generalize
better to unseen data points than the solution obtained without regularization, Figure 2.6 (a).
Applied in real world problems the trade-off parameter λ can be estimated by cross-validation.

The ridge regression example empirically showed that regularization can improve the quality
of the solution by restricting the hypothesis space in a proper way.

2.4 The Support Vector Machine
The probably most important machine learning method for classification is the Support Vector
Machine (SVM) introduced by Cortes and Vapnik (1995). Recall that the classification problem
using the zero-one loss is ill-posed, since there are infinitely many indistinguishable solutions in
the linear separable case. We called the set of all classifiers agreeing with the training set the
version space. The question is which hypothesis to select from the version space. To find an
answer to this question consider Figure 2.7, where a subset of the version space is illustrated
for an example dataset. Based on the zero-one loss all the hypotheses are the same, despite the
fact that we would probably choose one of them with a large margin to the training instances
of both classes. Cortes and Vapnik (1995) utilized that simple idea, referred to as maximum
margin principle, to determine which hypothesis in the version space is the best one. To sum
up, the solution with the maximum margin to the instances of both classes is assumed to be the
best one. We define the margin for a given training set the following way.

22 CHAPTER 2. MACHINE LEARNING

Definition 38. (Margin) For a set of points X ∶= {x1, . . . , xn} living in a Hilbert space H and a
hyperplane P(w,b) ⊂ H the margin d̂ is defined as the distance from the hyperplane to it’s closest
point x ∈X

d̂(w,X) ∶= min
x∈X

∣ ⟨w,x⟩ ∣
∥w∥2

, (2.51)

where ∣⟨w,x⟩∣
∥w∥2

is the projection of x to the normal vector of the hyperplane w.

2.4.1 Linearly Separable Case

Let’s for the sake of simplicity assume that the training set z = (x,y) of size n is linearly
separable in the feature space Hφ induced by φ and that Y is {−1,1}. In the linearly separable
case the inequation yi ⟨w,φ(xi)⟩ ≥ 0 holds for all i ∈ {1, . . . , n}. Therefore, we can get rid of the
modulus in ∣ ⟨w,φ(xi)⟩ ∣ by multiplying ⟨w,φ(xi)⟩ with yi. The problem of finding the separating
hyperplane with the largest margin can be written as a constrained optimization problem

maxw mini yi⟨w,φ(xi)⟩∥w∥2

w.r.t. w ∈ Hφ, xi ∈ x, for i ∈ {1, . . . , n}
s.t. yi ⟨w,φ(xi)⟩ ≥ 0, for i ∈ {1, . . . , n},

(2.52)

where the objective is to maximize the margin between the hyperplane and the training set, in
such a way that there is no disagreement. At first glance, the optimization problem given by
Equation 2.52 seems hard, since for every choice of w the closest training point to the hyperplane
might be different.

The problem can be significantly simplified by defining yi ⟨w,φ(xi)⟩ as one for points φ(x) ∈
Hφ that lie on the boundaries of the margin. Figure 2.8 visualizes the resulting situation. As
a consequence for all training points xi, with i ∈ {1, . . . , n}, the equation yi ⟨w,φ(xi)⟩ ≥ 1 is
satisfied. This can be achieved without loss of generality, since it is always possible to adjust
the feature space mapping in such a way that the boundary equations are satisfied. Therefore,
the optimization problem to solve changes to

max 1
∥w∥2

w.r.t. w ∈ Hφ,
s.t. yi ⟨w,φ(xi)⟩ ≥ 1, for i ∈ {1, . . . , n},

(2.53)

which is equivalent to

min 1
2∥w∥2

2
w.r.t. w ∈ Hφ,
s.t. yi ⟨w,φ(xi)⟩ ≥ 1, for i ∈ {1, . . . , n}.

(2.54)

The resulting optimization problem is a quadratic optimization problem with linear con-
straints and is solvable with the use of so-called Lagrangian multipliers, which are introduced in
Appendix 2.A. Before considering the Lagrangian dual problem let’s think about the non-linearly
separable case.

2.4.2 Non-linearly Separable Case

If the training set z = (x,y) is not linearly separable in the feature space Hφ, training points
that lie on the wrong side of the margin, i.e.

∃(x, y) ∈ z ∶ y ⟨w,x⟩ < 1, (2.55)

2.4. THE SUPPORT VECTOR MACHINE 23

will exist.
Therefore, the optimization problem needs to be adjusted to that situation in order to make

it solvable. One popular method to account for points that are possibly on the wrong side of
the margin, namely the usage of so-called slack variables. Cristianini and Shawe-Taylor (2000)
outline the usage of slack variables in the context of the SVM and Tsochantaridis et al. (2005a)
discuss a variety of different types of slack variables linked to specific tasks.

In the following, we will introduce a type of slack variables, that is used in the "1-norm
soft margin"-SVM formulation by Cristianini and Shawe-Taylor (2000). For every training point
xi we add a slack variable ξi, with i ∈ 1, . . . , n, to the objective function. The slack variable ξi
measures the distance between the point xi and the correct boundary or in other words the slack
ξi measures the wrongness of the point xi. Since slacks measure the "wrongness" the sum of all
slacks is an additional quantity that has to be minimized. Thereby, the optimization problem
for the non-linearly separable case is

min 1
2∥w∥2

2 + C
n ∑

n
i=1 ξi

w.r.t. w ∈ Hφ, ξi ∈ R, for i ∈ {1, . . . , n}
s.t. yi ⟨w,φ(xi)⟩ ≥ 1 − ξi,

ξi ≥ 0 for i ∈ {1, . . . , n},

(2.56)

where yi ⟨w,φ(xi)⟩ is greater or equal to one for points that are on the correct side of the
margin and greater or equal to 1 − ξi for points on the wrong side of the margin, meaning that
shifting the point xi into the direction yiw by ξi

∥w∥2
would put it to the correct side of the margin.

The above optimization problem given by equation 2.56 can be cast into the regularized risk
minimization framework by multiplying it with 1/C and interpreting the slack ξi as loss for the
training point xi, a loss function also known as the hinge loss.

Definition 39. (Hinge loss - binary case) For Y = {−1,1} the hinge loss chinge is defined as

chinge ∶ R × Y → [0,∞) ∶ (ŷ, y) ↦max(0,1 − yŷ), (2.57)

where we interpret the first argument as prediction and the second one as ground truth.

The hinge loss is given by the optimal value of ξi for a fixed w. At this point we can only
observe that it is greater or equal to zero and greater or equal to 1 − yi ⟨w,φ(xi)⟩, which is
obtained by rearranging the constraint yi ⟨w,φ(xi)⟩ ≥ 1 − ξi. In the following, it will become
clear why max(0,1 − yi ⟨w,φ(xi)⟩) is really the optimal value of the i-th slack variable.

2.4.3 Solving the Constrained Optimization Problem

The primal problem of the binary support vector machine, given by Equation 2.56, is a quadratic
optimization problem with linear constraints. Therefore according to Appendix 2.A it can be
solved in it’s dual formulation. In order to derive the Lagrangian dual form, we first need to
examine the Lagrangian function

L(w, ξ, β,α) = 1
2
∥w∥2

2 +C
n

∑
i=1
ξi −

n

∑
i=1
βiξi −

n

∑
i=1
αi(yi ⟨w,φ(xi)⟩ − 1 + ξi), (2.58)

where ξ is a vector containing all the slack variables and β and α are vectors containing the
Lagrange multipliers for the inequality constraints. The negative sign at the terms corresponding
to the constraints comes from the fact that a ≥ b is equivalent to −a ≤ −b.

The Lagrangian dual function is obtained by minimizing the Lagrangian formula, see Equa-
tion 2.58, with respect to the primal variables, ξ and w. Since the objective in Equation 2.58 is

24 CHAPTER 2. MACHINE LEARNING

a convex function with respect to w and ξ its minimum can be found by setting the gradients
with respect to w and ξ,

∂L

∂w
(w, ξ, β,α) = w −

n

∑
i=1
αiyiφ(xi) != 0 (2.59)

and
∂L

∂ξi
(w, ξ, β,α) = C1 − β − α != 0, for i ∈ {1, . . . , n} (2.60)

to zero. From Equation 2.59 follows that

w =
n

∑
i=1
αiyiφ(xi) (2.61)

and from Equation 2.60 follows that
β = C1 − α. (2.62)

Additionally, the remaining Karush-Kuhn-Tucker (KKT) conditions, namely the KKT com-
plementarity conditions

αi(yi ⟨w,φ(xi)⟩ − 1 + ξi) = 0
(αi −C)ξi = 0 (using βi = C − αi)

(2.63)

must be satisfied.
Remark 40. (Hinge loss) The KKT conditions legitimate the definition of the hinge loss, see
Equation 2.57. When the i-th boundary constraint, yi ⟨w,φ(xi)⟩ − 1 + ξi ≥ 0, is active, i.e.
αi > 0, then ξi must be equal to 1 − yi ⟨w,φ(xi)⟩ and αi must be equal to C and when the i-th
boundary constraint is inactive, i.e. αi = 0, then ξ must be equal to zero in order to satisfy the
complementarity conditions, given by Equation 2.63.

By substituting Equation 2.61 and Equation 2.62 back into the Lagrange formula 2.58 the
Lagrangian dual function g

g(α) = 1
2
∥
n

∑
i=1
αiyiφ(xi)∥2

2+C
n

∑
i=1
ξi−

n

∑
i=1

(C − αi)ξi−
n

∑
i=1
αi(yi ⟨

n

∑
j=1

αjyjφ(xj), φ(xi)⟩ − 1 + ξi) (2.64)

is obtained. The expression for g can be simplified by using the identity ∥a∥2
2 = ⟨a, a⟩, for a ∈ Hφ,

and the bilinearity of the inner product, resulting in

g(α) = 1
2

n

∑
i,j=1

αiαjyiyj ⟨φ(xi), φ(xj)⟩−
n

∑
i,j=1

αiαjyiyj ⟨φ(xi), φ(xj)⟩+
n

∑
i=1
αi+

n

∑
i=1

(C − αi −C + αi)ξi.

(2.65)
After grouping the terms we get

g(α) = −1
2

n

∑
i,j=1

αiαjyiyj ⟨φ(xi), φ(xj)⟩ +
n

∑
i=1
αi. (2.66)

Since the Lagrange dual function g, given by Equation 2.66, provides a lower bound on the
optimal value of the optimization problem it needs to be maximized in order to find the best
possible lower bound. Maximizing the dual function is equivalent to minimizing its negative

min 1
2 ∑

n
i,j=1 αiαjyiyj ⟨φ(xi), φ(xj)⟩ −∑ni=1 αi

w.r.t. αi ∈ R, for i ∈ {1, . . . , n}
s.t. 0 ≤ αi ≤ C, for i ∈ {1, . . . , n} ,

(2.67)

where the box-constraints for αi come from the KKT conditions and Equation 5.70, since αi ≥ 0,
βi ≥ 0 and αi = C − βi imply that αi ≤ C for i ∈ {1, . . . , n}.

2.4. THE SUPPORT VECTOR MACHINE 25

−1 −0.5 0 0.5 1

0

2

4

6

8

X

Y

(a) Polynomial of degree one

−1 −0.5 0 0.5 1

0

2

4

6

8

X

Y
(b) Polynomial of degree three

−1 −0.5 0 0.5 1

0

2

4

6

8

X

Y

(c) Polynomial of degree five

−1 −0.5 0 0.5 1

0

2

4

6

8

X

Y

(d) Polynomial of degree ten

−1 −0.5 0 0.5 1

0

2

4

6

8

X

Y

(e) Polynomial of degree 15

Figure 2.4: Linear regression using polynomials of increasing degree (red). The training data
points (green) were generated by evaluating a polynomial function (blue) and adding Gaussian
noise.

26 CHAPTER 2. MACHINE LEARNING

−1 −0.5 0 0.5 1

0

2

4

6

8

X

Y

(a) Polynomial of degree 15

−1 −0.5 0 0.5 1

0

2

4

6

8

X

Y

(b) Polynomial of degree 15

Figure 2.5: Linear regression using polynomials of degree 15 (red). The training data points
(green) were generated by evaluating a polynomial function (blue) and adding Gaussian noise.
The only difference between the training data in the left figure and in the right figure is that
the point indicated as a dot in both figures doesn’t correspond.

2.4. THE SUPPORT VECTOR MACHINE 27

−1 −0.5 0 0.5 1

0

2

4

6

8

X

Y

(a) λ equal to zero

−1 −0.5 0 0.5 1

0

2

4

6

8

X

Y

(b) λ equal to 0.1

−1 −0.5 0 0.5 1

0

2

4

6

8

X

Y

(c) λ equal to one

−1 −0.5 0 0.5 1

0

2

4

6

8

X

Y

(d) needlessly large λ

Figure 2.6: Ridge regression using polynomials of degree 15 (red) with different trade-off param-
eters λ. The training data points (green) were generated by evaluating a polynomial function
(blue) and adding Gaussian noise.

28 CHAPTER 2. MACHINE LEARNING

y

x

Figure 2.7: Several elements of the version space are illustrated in different colors. All of them
minimize the empirical risk with the zero-one loss, however intuitively we would tend to choose
a hypothesis similar to the red, blue or purple one. The red line is the one that satisfies the
maximum margin property. The illustration is derived from an illustration by Yifan.

y

x

w
⋅ x
+ b
= 0w

⋅ x
+ b
= 1

w
⋅ x
+ b
= −

1

2∥w
∥

b∥w
∥

w

Figure 2.8: The hyperplane with the maximum margin in a two dimensional example. In
two dimensions the hyperplane corresponds to a line. For simplicity reasons the feature space
mapping φ(x) = (x,1)′ and the weight vector ŵ = (w, b)′ resulting in ⟨(ŵ, φ(x))⟩ = wx + b are
used. The dotted lines illustrate the boundaries of the margin, which are set to one and minus
one, respectively. The illustration is taken from Yifan.

Appendix

2.A Constrained Optimization

In this section the Karush-Kuhn-Tucker theory is briefly summarized, the material mainly is
taken from the Convex Optimization textbook of Boyd and Vandenberghe (2004), where further
details and proofs can be found.

2.A.1 The Problem

The goal of this chapter is to solve an optimization problem with respect to certain constraints

min f(x)
w.r.t. x ∈ Rn
s.t. gi(x) ≤ 0, i = 1, . . . ,m,

hj(x) = 0, j = 1, . . . , p.

(2.68)

Example 41. Problems of this shape naturally occur in many scenarios, imagine for example
that you would like to build a windmill at a given contour line of a mountain. Obviously the
strength of the wind can vary at different locations and therefore it would be beneficial to choose
the location on the contour line with the largest wind strength. In this scenario the variable of
interest x ∈ R3 would correspond to a position in space, the objective function would be a function
f ∶ R3 → R, that gives the wind strength at a given position and the constraint could be another
function h ∶ R3 → R,that is zero if and only if the current position is located on the contour line
of interest. Since Optimization Problem 2.68 is stated as a minimization problem it the sign of
the objective function has to be reversed in order to maximize the wind strength, resulting in

min −f(x)
w.r.t. x ∈ R3

s.t. h(x) = 0.
.

2.A.2 The Lagrangian Function

Definition 42. (Lagrange function) For Optimization Problem 2.68, the Lagrange function

L(x,λ, ν) ∶= f(x) +
m

∑
i=1
λigi(x) +

p

∑
j=1

νjhj(x) (2.69)

is obtained by adding a linear combination of the constraints to the objective function. The
linear factors are often referred to as Lagrange multipliers in honor of "Joseph-Louis de La-
grange".

29

30 CHAPTER 2. MACHINE LEARNING

When having a look at the gradient of the Lagrange function

∇L(x,λ, ν) =
⎛
⎜
⎝

∂L
∂x (x,λ, ν)
g(x)
h(x)

⎞
⎟
⎠
, (2.70)

where g ∶ Rn → Rm is a vector valued function with the inequality constraints as component
functions and h ∶ Rn → Rp is a vector valued function with the equality constraints as component
functions. By setting the gradient of the Lagrange function to zero it is guarantied, that the
equality constraints are fulfilled. To ensure the validity of the inequality constraints additional
conditions, referred to as Karush-Kuhn-Tucker (KKT) conditions, are necessary. The KKT con-
ditions are named after Kuhn (1982) and Kuhn and Tucker (1951) and are used to generalize the
Lagrange multiplier formalism to constraint optimization problems with inequality constraints.
After adding the KKT conditions, the optimization problem is

maxλ,ν minxL(x,λ, ν)
s.t. λi ≥ 0, i = 1, . . . ,m,

λigi(x) = 0, i = 1, . . . ,m,
(2.71)

which is referred to as the dual problem. We shall see in the remainder of this chapter why the
dual problem takes this form.

2.A.3 The Lagrangian dual function

Definition 43. (Lagrange dual function) The Lagrange dual function is defined as the infimum
of the Lagrange function with respect to the primal variable

D ∶ Rm ×Rp → R ∶ (λ, ν) ↦ inf
x
L(x,λ, ν). (2.72)

As we shall see in the next section the Lagrange dual function provides a lower bound of the
optimal solution.

2.A.4 Linear approximation interpretation

If the optimization problem would be unconstrained and the objective function differentiable
it would be straightforward to examine the function’s extrema, by setting the gradient to zero
and analyzing the definiteness of the hessian matrix. Motivated by that thought Optimization
Problem 2.68 can be transformed to an unconstrained optimization problem,

min f(x) +∑mi=1 I−(gi(x)) +∑
p
j=1 I0(hj(x))

w.r.t. x ∈ Rn, (2.73)

where the indicator functions

I0 ∶ R→ R ∶ u↦
⎧⎪⎪⎨⎪⎪⎩

0 if u = 0
∞ else

(2.74)

and

I− ∶ R→ R ∶ u↦
⎧⎪⎪⎨⎪⎪⎩

0 if u ≤ 0
∞ else

(2.75)

are used to exclude unwanted results, by punishing them infinitely hard. If the constraints
are fulfilled the indicator functions output zero, and therefore are not affecting the objective

2.A. CONSTRAINED OPTIMIZATION 31

function at all. However if a point violates a constraint the corresponding indicator function
adds a penalty (+∞) to the objective. As a consequence points violating the constraints are
not considered when looking for the minimum. Linearly approximating the indicator functions
yields the Lagrangian function

L(x,λ, ν) = f(x) +∑mi=1 λigi(x) +∑
p
j=1 νjhj(x). (2.76)

In a certain sense the previously hard punishment of unwanted solutions now turned into
a soft one. Assuming λ > 0 for inequality constraints the punishment is zero when gi(x) = 0,
larger than zero when gi(x) > 0 and smaller than zero when gi(x) < 0. Consequently solutions
inside of the compactum, parametrized by gi, with a margin to the boundary are preferred using
the soft formulation. Similar considerations can be made for equality constraints, which can be
rewritten in terms of inequality constraints

hi(x) = 0 ⇐⇒ hi(x) ≤ 0 ∧ hi(x) ≥ 0. (2.77)

Therefore, the Lagrange function can be written as

f(x) +
m

∑
i=1
λigi(x) +

p

∑
j=1

αjhj(x) −
p

∑
j=1

βjhj(x), (2.78)

where α > 0 and β > 0 are the Lagrange multipliers for the inequality constraints corresponding
to the equality constrain. Obviously the equation ν = α−β holds, meaning that ν can be any real
number, which is not particularly satisfying when thinking of νjhj(x) as approximations of the
penalty terms. Nevertheless the linear approximations underestimate the indicator functions,
since λiu ≤ I−(u) and νju ≤ I0(u) hold for all u. As a consequence, the expression

maxλ,ν minxL(x,λ, ν), (2.79)

gives the best lower bound on the optimal value of the original problem. The function D(λ, ν) =
minxL(x,λ, ν) is called the Lagrange dual function of the problem.

2.A.5 Weak and Strong Duality

One question that naturally rises is how good the best lower bound obtained from the dual
problem can be. Let p∗ denote the optimal value of the Optimization Problem 2.68, in this
context usually called primal problem, and let d∗ denote the best lower bound on p∗ that can
be obtained from D, then a property which is called weak duality, namely

d∗ ≤ p∗, (2.80)

always holds. If the equality
d∗ = p∗ (2.81)

holds, we speak of strong duality. Slater’s theorem, introduced by Slater (2014), provides a
sufficient condition for strong duality to hold. Namely, if the primal problem is convex and
strictly feasible, such that

∃x0 ∈ Rn ∶ gi(x0) < 0, hj(x0) = 0 for i = 1, . . . ,m and j = 1, . . . , p, (2.82)

where the inequality constraints g1, . . . , gm are convex and the equality constraints h1, . . . , hp are
affine functions, strong duality will hold.

32 CHAPTER 2. MACHINE LEARNING

2.A.6 Karush-Kuhn-Tucker Optimality Conditions

For differentiable functions f, g1, . . . , gm, h1, . . . , hm any pair primal and dual optimal points x∗
and (λ∗, ν∗) with strong duality, i.e. a duality gap f(x∗)−D(λ∗, ν∗) equal to zero, must satisfy

∇f(x∗) +
m

∑
i=1
λi∇gi(x∗) +

p

∑
j=1

νj∇hj(x∗) = 0, (2.83)

since x∗ minimizes the Lagrange function L(x,λ∗, ν∗) over x. Therefore, following conditions

gi(x∗) ≤ 0, i = 1, . . . ,m
hi(x∗) = 0, i = 1, . . . , p

λi ≥ 0, i = 1, . . . ,m
λigi(x∗) = 0, i = 1, . . . ,m

∇f(x) +
m

∑
i=1
λi∇gi(x) +

p

∑
j=1

νj∇hj(x) = 0,

(2.84)

which are called Karush-Kuhn-Tucker conditions, must hold for any pair of primal and dual
optimal points.

Chapter 3

Kernel Methods

3.1 Motivation

We have seen that machine learning methods work well in the linear separable case. However,
as far as the real world’s problems are concerned, we cannot rely on the linear separability of the
data. In fact, we cannot even generally assume that the data is represented in a Hilbert space.
We have already seen that one way to deal with non-linear separable and abstract data is to
embed it into a Hilbert space, usually referred to as feature space. Thereby, implicitly a different
hypothesis space is utilized, within which the embedded data points are possibly separable. So
far, we rarely had to clarify explicitly which particular feature space mapping we used, despite
the fact that in practice - for the solution of a problem - this is a mandatory step. Unfortunately,
the choice of a feature space mapping can be difficult, particularly when working with abstract
objects. Even when working with vector valued data the embedding into the feature space can
be a non-linear function and the feature space can be high dimensional. Even when leaving the
choice of feature space aside, the embedding into the feature space and the calculations in the
feature space are often computationally expensive.

Recently, kernel methods gained a lot of attention since they provide a tool to use the
advantages of using high dimensional feature spaces, while avoiding the computational costs of
embedding the data. The following example is intended to provide a better understanding of
the problem.

Example 44. (Kernel classifier) Let the input space X be a non-empty set, z ∈ (X × Y)m a
training sample and φ ∶ X → Hφ a feature space mapping. In the previous chapter we saw that
linear classifiers depend on the evaluation of a linear form

f ∶ X → R ∶ x↦ ⟨w,φ(x)⟩ .

Let’s assume for now that w has a representation of the form

w =
m

∑
i=1
γiφ(xi), (3.1)

in which γ ∈ Rm, like in the SVM example in Equation 2.61, where γi would be yiαi. Then,
by using the representation of w given by Equation 3.1 and the bilinearity of the inner product,
an evaluation of a linear form can be written as a linear combination of inner products between

33

34 CHAPTER 3. KERNEL METHODS

training points and the point of interest

f(x) = ⟨w,φ(x)⟩

= ⟨
m

∑
i=1
γiφ(xi), φ(x)⟩

=
m

∑
i=1
γi ⟨φ(xi), φ(x)⟩ .

(3.2)

Therefore, if we knew how to compute the inner product in the feature space for pairs of elements
of the input space, i.e. if we knew how to compute k(x̂, x) ∶= ⟨φ(x̂), φ(x)⟩, the explicit feature
mapping φ would not be necessary in order to evaluate linear classifiers. The function k ∶ X ×X →
R is called kernel function.

As seen in the previous example, a kernel function corresponds to an inner product in a
feature/inner-product space. Therefore, if the problem admits a representation where data
points only enter via inner products in the feature space and the kernel function of that feature
space is known, the utilization of the benefits provided by the feature space by evaluating the
inner products directly via the kernel function will be possible. In many cases it is compu-
tationally more efficient to evaluate the kernel function directly than to embed the data and
consecutively compute the inner product between the embedded data points. The following
example is intended to provide a better idea of the magnitudes of the computational benefits.

Example 45. (Polynomial kernel) To separate the data depicted in Figure 2.2 a feature space
with quadratic basis functions was used. Obviously, the last time when we considered this example
prior knowledge about the classes influenced the choice of basis functions of the feature space.
Typically, we don’t have prior knowledge about the classes in real world applications, which is
why it would make sense to include additional basis functions in order to solve more general
tasks. Intuitively, one could include linear basis functions and also basis functions in the form
of polynomials of higher degree. This considerations ultimately lead to the space of polynomials of
a certain degree, which we will see later in this chapter. For now consider polynomials of degree
two with two dimensional inputs. One possible feature space mapping in order to represent such
polynomials is

φ ∶ R2 → R6 ∶ (x, y) ↦ (x2, y2,
√

2xy,
√

2x,
√

2y,1)′, (3.3)

where the coefficients of x, y and xy are chosen equal
√

2 for mathematical convenience. Even
in this small scale example a quick growth of the dimensionality required to represent the data
is visible, if the dimensionality of the input data was increased from two to n ≥ 2, i.e.

φn((x1, . . . , xn)′) =
(x2

1, . . . , x
2
n

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n

,
√

2x1x2, . . . ,
√

2x1xn
´¹¹¹¸¹¹¶

n−1

,
√

2x2x3, . . . ,
√

2x2xn
´¹¹¹¸¹¹¶

n−2

, . . . ,
√

2xn−1xn
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

1
´¹¹¸¹¹¹¶

(n+1)n
2

,
√

2x1, . . . ,
√

2xn
´¹¹¹¸¹¹¶

n

, 1®
1

),

(3.4)
the dimensionality of the second-degree polynomial feature space would increase to 1+n+ (n+1)n

2 ,
one dimension for the constant term, n dimensions for the linear terms and (n+1)n

2 dimensions
for the quadratic terms. This trend continues when increasing the degree of the polynomial,
resulting in high dimensional feature spaces, where computations are costly. In contrast to that,
the evaluation of the kernel function corresponding to those feature spaces can be performed effi-
ciently. In the example at hand focusing on the second-order polynomial space the corresponding

3.2. THE KERNEL TRICK 35

kernel function is

k(u, v) = ⟨φ(u), φ(v)⟩
= (x2

1, y
2
1,

√
2x1y1,

√
2x1,

√
2y1,1) ⋅ (x2

2, y
2
2,

√
2x2y2,

√
2x2,

√
2y2,1)′

= x2
1x

2
2 + y2

1y
2
2 + +2x1x2y1y2 + 2x1x2 + 2y1y2 + 1

= 1 + 2x1x2 + 2y1y2 + x2
1x

2
2 + 2x1x2y1y2 + y2

1y
2
2 (rearrangement of terms)

= 1 + 2 ⟨u, v⟩ + ⟨u, v⟩2 (by definition of u & v)
= (⟨u, v⟩ + 1)2 (binomial equation),

(3.5)
where u = (x1, y1)′ and v = (x2, y2)′ and instead of 1+n+ (n+1)n

2 multiplications, that are necessary
for the computation of the inner product in the feature space, only n + 1 multiplications are
required for the direct evaluation of the corresponding kernel function. In our example n was
equal to two.

At this point, it is worth pointing out that considering the kernel version of machine learning
problems can be seen as a computational trick in a certain sense, which might be one of the
reasons why in the literature (Shawe-Taylor and Cristianini, 2004; Herbrich, 2001) the process
of transforming an algorithm into its kernel form is known as the kernel trick. Using kernel
methods not only high dimensional feature spaces can be utilized but also infinite dimensional
ones, as we will see when having a look at Gaussian kernels. To make a long story short, the
goal of this chapter is to utilize kernel functions in order to access the hypothesis spaces induced
by feature space mappings in a computationally more efficient way.

3.2 The Kernel Trick

As previously mentioned, the kernel function belonging to a non-linear feature space Hφ is given
by

k(x, y) = φ(x)′φ(y) = ⟨φ(x), φ(y)⟩ , (3.6)

which corresponds to the inner product in that feature space. If it is possible to rewrite an
algorithm in such a way that the input vectors only enter via inner products, the latter will be
replaced by arbitrary kernel functions - a process which is known as the kernel trick.

3.2.1 When Can the Kernel Trick Be Applied?

The Real Valued Case

The kernel trick is applicable to quadratic programming problems with linear constraints. Con-
sequently, the optimization problems of many linear parametric models

min 1
2w

′Qw + c′d
w.r.t. w ∈ Hφ, d ∈ R∣I∪J ∣,
s.t. yi ⟨w,φ(xi)⟩ − fi(d) = 0, for i ∈ I

yj ⟨w,φ(xj)⟩ − gj(d) ≥ 0, for j ∈ J ,

(3.7)

where a training sample z of size n is considered, I,J are subsets of {1, . . . , n}, φ is a feature
space mapping from X to Hφ, Q is symmetric linear operator from Hφ to Hφ, c and d are vectors
in R∣I∪J ∣ and fi for i ∈ I and gj for j ∈ J are differentiable functions from R∣I∪J ∣ to R, allow
for the application of the kernel trick.

36 CHAPTER 3. KERNEL METHODS

In order to derive the kernel representation of the optimization problem, consider the corre-
sponding Lagrange function

L(w,d,α, β) = 1
2
w′Qw + c′d +∑

i∈I

αi(⟨w,φ(xi)⟩ − fi(d)) − ∑
j∈J

βj(⟨w,φ(xj)⟩ − gj(d)). (3.8)

Note that there is no co-occurrence of feature vectors φ(x), with x ∈ X , and the primal parameter
d. As a consequence, the optimization for the parameter d has no impact on the applicability
of the kernel trick. Therefore, we only need to consider the derivatives with respect to w in
order to figure out whether the kernel trick is applicable. When considering the gradient of the
Lagrange function with respect to w, the primal variable w occurs only linearly

∂L

∂w
(w,d,α, β) = Qw +∑

i∈I

αiφ(xi) − ∑
j∈J

βjφ(xj). (3.9)

Setting the gradient with respect to the primal variable to zero and solving for the primal
variable yields

w = Q−1(−∑
i∈I

αiφ(xi) + ∑
j∈J

βjφ(xj))

=∶ Q−1 ∑
i∈K

γiφ(xi), with K ∶= I ∪ J ,
(3.10)

and substituting it back into the Lagrange function will yield a Lagrangian dual problem in
which the kernel trick is applicable. When substituting Equation 3.10 into w′Qw we get

w′Qw = (Q−1 ∑
i∈K

γiφ(xi))
′

Q(Q−1 ∑
i∈K

γiφ(xi))

= (∑
i∈K

γiφ(xi)′(Q−1)′)(∑
i∈K

γiφ(xi)) (transpose and QQ−1 = id)

= (∑
i∈K

γiφ(xi)′Q−1)(∑
i∈K

γiφ(xi)) (symmetry of Q−1)

(3.11)

since the inverse of a symmetric operator Q−1 is a symmetric operator. According to the spectral
theorem the symmetric operator Q−1 can be written as (Q−1) 1

2 (Q−1) 1
2 , yielding

w′Qw = (∑
i∈K

γiφ(xi)′(Q−1)
1
2)((Q−1)

1
2 ∑
i∈K

γiφ(xi)) (by Q−1 = (Q−1)
1
2 (Q−1)

1
2)

= ⟨∑
i∈K

γi((Q−1)
1
2)′φ(xi),∑

i∈K

γi(Q−1)
1
2φ(xi)⟩ (by φ(xi)′(Q−1)

1
2 = ((Q−1)

1
2)′φ(xi))

= ⟨∑
i∈K

γi(Q−1)
1
2φ(xi),∑

i∈K

γi(Q−1)
1
2φ(xi)⟩ (by (Q−1)

1
2 = Pdiag(

√
λ1, . . . ,

√
λd)P ′)

= ∑
i,j∈K

γiγj ⟨(Q−1)
1
2φ(xi), (Q−1)

1
2φ(xj)⟩ (bilinearity of inner product),

(3.12)
which is a linear combination of inner products in the feature space induced by (Q−1) 1

2 ○ φ.

3.2. THE KERNEL TRICK 37

Similarly substituting Equation 3.10 into ∑i∈I αiw′φ(xi) − fi(d) yields

∑
i∈I

αi(w′φ(xi) − fi(d)) = ∑
i∈I

αi((Q−1 ∑
j∈K

γjφ(xj))′φ(xi) − fi(d))

= ∑
i∈I

αi((∑
j∈K

γjφ(xj)′)(Q−1)′φ(xi) − fi(d)) (transpose)

= ∑
i∈I

αi((∑
j∈K

γjφ(xj)′)Q−1φ(xi) − fi(d)) (symmetry of Q−1)

= ∑
i∈I

∑
j∈K

(αiγjφ(xj)′Q−1φ(xi)) −∑
i∈I

αifi(d) (distributivity)

= ∑
i∈I

∑
j∈K

αiγj ⟨(Q−1)
1
2φ(xi), (Q−1)

1
2φ(xj)⟩ −∑

i∈I

αifi(d) (similar to Equation 3.12),

(3.13)
which is a linear combination of inner products in the feature space induced by (Q−1) 1

2 ○φ. The
substitution for ∑i∈J βiw′φ(xi) − gi(d) works analogously.

We have already seen a concrete example clarifying the statements above, namely the dual
problem of the binary support vector machine given by Equation 2.67 which depends only on
inner products in the feature space and thereby allows the application of the kernel trick. In
order to obtain the corresponding primal optimization problem Q is set to the identity mapping,
J is set to {1, . . . , n}, I is set to ∅, c is set to 1Cn and gj(d) is set to 1 − dj . An alternative
framework that is capable of transforming general linear programming problems into their kernel
form was introduced by Mangasarian (2006).

Beyond the Real Valued Case

Of course, the kernel trick is not limited to the real valued learning problems. Prior to further
investigations concerning theoretical details of the kernel formulation of real valued learning
problems, a brief look at the kernel version of the regularized multivariate linear regression will
shed more light on the issue. In the following we will encounter various additional examples
with more complex output spaces.
Example 46. (Linear Kernel Regression1): In the multivariate case of the linear regression
problem with regularization the input space X is a d-dimensional R-vector space and the output
space Y is a k-dimensional R-vector space. Given a set of observations

{(xi, yi)}Ni=1 ∈ (X × Y)N (3.14)

we are looking for a linear function

f ∶ X → Y ∶ x↦Wx, (3.15)

parametrized by a the k × d matrix W, that minimizes the sum-of-squares error

min
W

1
2
N

∑
i=1

∥yi −Wxi∥2 + C
2
∥W∥2

Frobenius. (3.16)

Looking at the objective function at hand it is not trivial to formulate the Lagrangian dual.
However, substituting yi −Wxi with ξi and adding equality constraints of the form ξi = yi −Wxi
to the optimization problem

min 1
2 ∑

N
i=1 ∥ξi∥2 + C

2 ∥W∥2
Frobenius

w.r.t. W ∶ X → Y, ξ ∈ Y
s.t. ξi = yi −Wxi, i ∈ {1 . . .N}

(3.17)

1Similar examples are considered by Saunders et al. (1998) and Cortes et al. (2006).

38 CHAPTER 3. KERNEL METHODS

does the trick. As a consequence, the linear regression problem can be considered from a con-
strained optimization perspective, where the Lagrangian dual form can be derived. The Lagrange
function of the constrained optimization problem is

L(W, ξ,A) = 1
2
N

∑
i=1

∥ξi∥2 + C
2
∥W∥2

Frobenius +
N

∑
i=1
α′i(Wxi − yi + ξi), (3.18)

where A is a k × N matrix with columns α1, . . . , αN . In order to obtain the Lagrangian dual
function the gradients of the Lagrangian with respect to the primal variables

∂L

∂W
(W, ξ,A) = CW +

N

∑
i=1
αix

′
i

!= 0 (3.19)

and
∂L

∂ξi
(W, ξ,A) = ξi + αi != 0 (3.20)

are set to zero. From Equation 3.19 follows that

W = − 1
C

N

∑
i=1
αix

′
i (3.21)

and from Equation 3.20 follows that
ξi = −αi. (3.22)

By substituting Equation 3.21 and Equation 3.22 back into the Lagrange formula, given by Equa-
tion 3.18, the Lagrangian dual function is obtained. The substitution of the expression for W
into the Frobenius norm is considered separately before performing the substitution into the La-
grange function and yields

∥ − 1
C

N

∑
i=1
αix

′
i∥2
Frobenius = ⟨− 1

C

N

∑
i=1
αix

′
i,−

1
C

N

∑
j=1

αjx
′
j⟩
Frobenius

= 1
C2

N

∑
i=1

N

∑
j=1

⟨αix′i, αjx′j⟩Frobenius (bilinearity of inner product)

= 1
C2

N

∑
i=1

N

∑
j=1

tr((αix′i)′αjx′j) (definition of Frobenius inner product)

= 1
C2

N

∑
i=1

N

∑
j=1

tr(xiα′iαjx′j) (transpose)

= 1
C2

N

∑
i=1

N

∑
j=1

α′iαjtr(xix′j) (α′i ⋅ αjis a scalar & linearity of trace)

= 1
C2

N

∑
i=1

N

∑
j=1

α′iαj ⟨xi, xj⟩ (tr(xy’) = tr(x’y)),

(3.23)
in which ∥A∥Frobenius = tr(A′A) denotes the Frobenius norm and ⟨A,B⟩Frobenius ∶= ∑i,j AijBij
the Frobenius inner product.

3.2. THE KERNEL TRICK 39

Similarly by substituting the new expression for W into ∑Ni=1 α
′
iWxi

N

∑
i=1
α′i(−

1
C

N

∑
j=1

αjx
′
j)xi = −

1
C

N

∑
i=1

N

∑
j=1

α′iαjx
′
jxi

= − 1
C

N

∑
i=1

N

∑
j=1

α′iαj ⟨xi, xj⟩
(3.24)

is obtained. Substituting everything back into the Lagrange formula given by Equation 3.18 yields

g(A) = −1
2
N

∑
i=1

∥αi∥2 + 1
2C

N

∑
i=1

N

∑
j=1

α′iαj ⟨xi, xj⟩ −
1
C

N

∑
i=1

N

∑
j=1

α′iαj ⟨xi, xj⟩

= −1
2
N

∑
i=1

∥αi∥2 − 1
2C

N

∑
i=1

N

∑
j=1

α′iαj ⟨xi, xj⟩ ,
(3.25)

where the kernel trick can be applied. As a result, we end up the dual function

g(A) = −1
2
N

∑
i=1

∥αi∥2 − 1
2C

N

∑
i=1

N

∑
j=1

α′iαjk(xi, xj). (3.26)

Since the Lagrange dual function g, given by Equation 3.25, provides a lower bound on the
optimal value of the optimization problem, it needs to be maximized in order to find the best
possible lower bound. Maximizing the dual function is equivalent to minimizing its negative

min 1
2 ∑

N
i=1 ∥αi∥2 + 1

2C ∑
N
i=1∑Nj=1 α

′
iαjk(xi, xj)

w.r.t. αi ∈ Y, i ∈ {1 . . .N} . (3.27)

3.2.2 Summary and Outlook

For many machine learning algorithms the kernel trick is applicable. It allows for the access to
the hypothesis space given by the composition of the feature space mapping φ ∶ X → Hφ and
linear forms from Hφ to R,

Hφ ∶= {g ∶ X → R ∶ g = f ○ φ, f ∈ H∗
φ and feature space mapping φ}, (3.28)

without the need of an explicit representation of the feature space mapping, namely by consid-
ering

Hk ∶= {g ∶ X → R ∶ g =
n

∑
i=1
αik(xi, ⋅), for n ∈ N, x1, . . . , xn ∈ X , α1, . . . αn ∈ R and k is a kernel function},

(3.29)
where k(x, y) ∶= ⟨φ(x), φ(y)⟩. It is to be noted that this is a non-trivial statement, which has so
far only been motivated by examples. In the following, additional work will be put into showing
that the equivalence

Hφ⇔Hk (3.30)

holds.

40 CHAPTER 3. KERNEL METHODS

Chapter 4

A Glance at Kernel Theory

This chapter is meant to introduce some of the theorems that build the theoretic foundation of
kernel methods, how they are used in the machine learning context, respectively. We revise the
theoretical foundation of the kernel trick and the usage of the resulting hypothesis spaces in the
scope of the regularized risk minimization framework. Most of the material is based on reviews
about reproducing kernel Hilbert spaces by Hofmann et al. (2006) and Wahba (2003) and the
statistical learning course notes of Poggio and Rosasco (2015).

4.1 Terminology - Kernel

The type of functions that are referred to as kernel functions in the context of machine learning
were initially examined by mathematicians, like Hilbert (1904), Mercer (1909) and Aronszajn
(1950), in the first half of the 20th century in the scope of integral calculus. Hilbert (1989) used
the German term ’Kern’ for complete quadratic forms that characterize linear integral equations
of the form

φ(s) = f(s) + ∫
b

a
k(s, t)φ(t)dt, (4.1)

where the goal is to find the unknown function φ given an inhomogeneity function f and a
’Kern’ k. In the German language the term ’Kern’ - comparable to the English word core -
refers to the innermost part of an object or organism such as a fruit. The ’Kern’ is the most
central and essential part of the fruit since it is fully determined by its ’Kern’ carrying the
necessary information and ability for reproduction. Similarly, the ’Kern’ of an integral equation
represents its most central part, leaving the inhomogeneity aside - the ’Kern’ fully determines
its solution. In the machine learning context the kernel function (’Kern’) can be thought of as
the most central part of a kernel method as well, since the choice of kernel function determines
the hypothesis space used. Despite the fact that the ’Kern’ serves different purposes in the fruit,
the integral equation and the kernel method, it determines the whole system.

4.2 Reproducing Kernel Hilbert Spaces (RKHS)

4.2.1 Outline

In the following, different perspectives on a rich family of hypothesis spaces, so-called reproducing
kernel Hilbert spaces (RKHS) as illustrated in Figure 4.1, are going to be studied. First a
mathematical definition will be introduced followed by a demonstration showing the one to one
correspondence between RKHS and positive definite kernels. In addition, the equivalence of Hφ

and Hk, given by Equation 3.28 and Equation 3.29, is going to be shown.

41

42 CHAPTER 4. A GLANCE AT KERNEL THEORY

Reproducing Ker-
nel Hilbert Spaces

Positive
definite
kernels

Feature
maps

Functional
analysis

Figure 4.1: Different perspectives on reproducing kernel Hilbert spaces.

4.2.2 Recap & Important Properties of Hilbert Spaces

Before looking at the theorems that provide theoretical justification for the kernel trick, some
mathematical definitions and results of relevance, taken from Rudin (2006), Wagner (2004) and
Hell and Neumann (2012), are going to be revised.

Function space In Chapter 2 we introduced the notion of function space as a set of functions
from set X to set Y, see Definition 3. Function spaces are often also vector spaces.

Hypothesis space The function space considered when solving a learning task is referred to
as hypothesis space, see Definition 4.

Hilbert space K-Vector spaces with an inner product, that are complete with respect to the
metric induced by their inner product, are so-called Hilbert spaces, see Definition 16. For
simplicity it is to be assumed that the field of real numbers, i.e. K ∶= R, will be used
without exception.

Dual space So far function spaces spanned by linear forms on Hilbert spaces called feature
spaces were used, see Definition 18. The space spanned by the linear forms from a Hilbert
space H to R

H∗ = {f ∶ H → R}, (4.2)
is called dual space. We will see that for the topological dual space H′ of a Hilbert space
is a Hilbert space with point-wise addition, point-wise scalar multiplication and an inner
product.

In a Hilbert space of functions we are allowed to add functions, multiply them with scalars
without leaving the Hilbert space. Additionally, thanks to the inner product associated with the

4.2. REPRODUCING KERNEL HILBERT SPACES (RKHS) 43

Hilbert space, we can talk about both orthogonality and distances, since angles and distances
are closely related to inner products. In order to study the connections between Hilbert spaces,
positive definite kernels and feature spaces, some additional properties of Hilbert spaces are
required, for instance the that Hilbert spaces are topological spaces.

Topological spaces

Earlier, the choice of linear functions on finite dimensional vector spaces as hypothesis functions
was partially motivated by the fact that linear functions on vector spaces are always continuous.
In the infinite dimensional spaces a more general concept of continuity is required.

Definition 47. (Topological space) The pair (X ,T), where X is a set and T is a collection
of subsets of X satisfying the axioms:

1. X ∈ T and ∅ ∈ T ,

2. for all sequences (Ai)i∈N ∈ T N holds that ⋃i∈NAi ∈ T ,

3. for all finite sequences (Ai)Ni=1 holds that ⋂Ni=1Ai ∈ T ,

is called topological space. The collection of sets T is called topology and defines which subsets
are open or closed.

Definition 48. (Open subset & closed subset) A subset S ⊂ X of a topological space (X ,T) is
open if S ∈ T and closed if X/S ∈ T .

Definition 49. (Topological subspace) A subset S of a topological space (X ,T) is a topological
space equipped with the subspace topology

TS ∶= {S ∩O ∶ O ∈ T }. (4.3)

This abstract definition of open and closed subsets leads to a more abstract definition of
continuity.

Definition 50. (Continuous function) Let (X ,TX) and (Y,TY) be topological spaces, then a
function f

f ∶ X → Y (4.4)

is continuous iff pre-images of open subsets of Y under f are open subsets of X , i.e.

∀OY ∈ TY ∶ f−1(OY) ∈ TX . (4.5)

Example 51. (Standard topology on Rd) The standard topology T on Rd is defined utilizing
the notion of open balls. An open ball of radius r around the point x ∈ X is defined as

Br(x) ∶= {y ∈ Rd ∶ ∥x − y∥ < r}, (4.6)

where ∥ ⋅ ∥ is a norm on Rd. Consequently, an open subset O of Rd is characterized by the fact
that for every point x ∈ O there exists an ε > 0 such that the ball Bε(x) is a subset of O. The
set of all open subsets, defined this way, is called the standard topology on Rd.

44 CHAPTER 4. A GLANCE AT KERNEL THEORY

Metric spaces

Definition 52. (Metric space) The pair (X , d), where X is a set and d is a metric, i.e. a
function from X ×X → R satisfying

1. d(x, y) ≥ 0 (non-negativity),

2. d(x, y) = 0⇔ x = y (identity of indiscernibles),

3. d(x, y) = d(y, x) (symmetry),

4. and d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality),

is called metric space.

The reasoning applied in Example 51 can be extended to metric spaces (X , d), where open
balls are defined using the metric d

Br(x) ∶= {y ∈ X ∶ d(x, y) < r}. (4.7)

Accordingly, the metric of a metric space induces a topology. As a consequence, Hilbert spaces
are topological spaces as well, since the inner-product induces a norm and this norm induces a
metric, which induces a topology.

Definition 53. (Complete metric space) A metric space (X , d) is complete iff the limit x ∶=
limn→∞ xn of every Cauchy sequence (xi)i∈N ∈ XN, i.e. every sequence (xi)i∈N ∈ XN satisfying

∀ε > 0 ∶ ∃N ∈ N such that ∀n,m ∈ N with m > N and n > N ∶ d(xm, xn) < ε, (4.8)

is contained in X .

Theorem 54. (Complete subspace) A closed subspace of a complete space is a complete sub-
space.

Proof. The interested reader is referred to Rudin (2006).

Hilbert spaces

The notion of Hilbert spaces combines the topological structure with the structure of inner
product spaces. At this point it is necessary to recall the definition of Hilbert spaces.

Definition 55. (Hilbert space) A Hilbert space H is an inner-product space, which is complete
with respect to the metric induced by it’s inner-product.

Example 56. (Examples of Hilbert spaces) The following spaces are Hilbert spaces:

1. l2, the space of square-summable sequences

l2(R) ∶= {(xi)i∈N ∈ RN ∶
∞

∑
i=1

∣xi∣2 < ∞} (4.9)

with the inner product

⟨x, y⟩l2 ∶=
∞

∑
i=1
xiyi. (4.10)

4.2. REPRODUCING KERNEL HILBERT SPACES (RKHS) 45

2. L2, the space of square-integrable functions

L2(R) ∶= {f ∈ RR ∶ ∫
∞

−∞
∣f(x)∣2dx < ∞}/{g ∈ RR ∶ ∫

∞

−∞
∣g(x)∣2dx = 0} (4.11)

with the inner product
⟨f, g⟩L2 ∶= ∫

∞

−∞
f(x)g(x)dx. (4.12)

3. Any finite dimensional Euclidean vector space with the corresponding scalar product.

The interested reader may verify that the listed examples are Hilbert spaces, by checking the
Hilbert space properties.

Definition 57. (Topological dual space) The space spanned by linear and continuous froms on
a Hilbert space H is referred to as the topological dual space H′. Clearly, the relation H′ ⊂ H∗

holds.

With the properties of the inner product the complement of a subspace can be uniquely
defined.

Definition 58. (Orthogonal complement) For a subspace S of a Hilbert space H the orthogonal
complement is defined as

S� ∶= {x ∈ H ∶ ∀y ∈ S ∶ ⟨x, y⟩H = 0}. (4.13)

The orthogonal complement is always closed.

Theorem 59. (S ⊕ S� ≃ H) Let H be a Hilbert space and S be a subspace of H, then

⊕ ∶ S × S� →H ∶ (x, y) ↦ x + y, (4.14)

defines an isomorphism.

Proof. The proof is not particularly interesting for this thesis. It basically needs to be shown,
that the function ⊕ is bijective and continuous. The interested reader can find the proof in
Wagner (2004).

Utilizing the definitions and results introduced so far, we can prove a theorem that will turn
out to be important in the following.

Theorem 60. (Riesz representation theorem) Let H be a Hilbert space, not necessarily a Hilbert
space of functions. The mapping ψ defined as

ψ ∶ H → H′ ∶ x↦ ⟨x, ⋅⟩H (4.15)

is an isomorphism, i.e. ψ is bijective and continuous.

Proof. The ideas of the following proof were taken from Wagner (2004). In order to show that
ψ defines an isomorphism between H and H∗, we only need to prove that ψ exists and that it
is bijective, since the linearity follows from the bilinearity of the inner product.

Well-posedness: From

∣ψ(x)(y)∣ = ∣ ⟨x, y⟩H ∣ (by definition)
≤ ∥x∥H∥y∥H (Cauchy-Schwarz inequality),

(4.16)

46 CHAPTER 4. A GLANCE AT KERNEL THEORY

for x, y ∈ H, follows

∥ψ(x)∥ ∶= sup
∥y∥H≤1

∣ψ(x)(y)∣ (operator norm)

= sup
∥y∥H≤1

∣ ⟨x, y⟩H ∣ (definition of ψ)

≤ sup
∥y∥H≤1

∣∥x∥H∥y∥H∣ (Cauchy-Schwarz inequality)

= ∥x∥H < ∞

(4.17)

and thereby the existence of ψ(x) for all x ∈ H.

Injectivity: In order to show that ψ is injective, we show that it is an isometric functional, i.e.
for all x ∈ H the property ∥ψ(x)∥ = ∥x∥H holds. From Equation 4.17 we already know an upper
bound for ∥ψ(x)∥, namely ∥x∥H. If we manage to show that the lower bound of ∥ψ(x)∥ is also
∥x∥H for all x ∈ H, we will know that ψ is isometric. The case x = 0 is simple, from Equation
4.17 and the properties of the norm, in particular from ∥ ⋅ ∥ ≥ 0, follows that ∥ψ[0]∥ = 0. If
x ∈ H/{0},

∥ψ(x)∥ = sup
∥y∥H≤1

∣ ⟨x, y⟩H ∣ (definition of ψ)

≥ ∣⟨x, x

∥x∥H
⟩H∣ (supremum property)

= ⟨x,x⟩2
H

∥x∥H
= ∥x∥H (absolute homogenity)

= ∥x∥2
H

∥x∥H
= ∥x∥H (norm induced by inner product)

(4.18)

will hold. Therefore, ψ is an isomeric functional, since Equation 4.17 and Equation 4.18 imply
∥x∥H ≤ ∥ψ(x)∥ ≤ ∥x∥H, which is equivalent to ∥ψ(x)∥ = ∥x∥H.

Surjectivity: To prove the surjectivity of ψ we need to show that ψ(H) = H′ or equiva-
lently that for every f ∈ H′ there exists a x ∈ H, with ψ(x) = f . The case f = 0 is trivial, it is
easy to check that ψ(0) = 0. If f ∈ H′/{0},

ker(f) = {x ∈ H ∶ f(x) = 0} ⊆ H (4.19)

is a complete subspace of H. By Theorem 59 an element x ∈ (ker(f))�/{0} exists. For all
x ∈ (ker(f))� the inequality f(x) ≠ 0 holds. Next, we are going to exploit that the functions
f ∈ H′ are linear to construct elements of ker(f). To do that, consider the following derivation

0 = f(y) − f(y) (Trick 17)

= f(y) − f(y)
f(x)
²
∈R

f(x) (Trick 17)

= f(y − f(y)
f(x)x) (R linearity of f),

(4.20)

where y ∈ H. From Equation 4.20 follows y − f(y)
f(x)x ∈ ker(f) for all y ∈ H. Now, since we have

managed to construct an element of ker(f) which depends on f(y), we utilize the fact that a x

4.2. REPRODUCING KERNEL HILBERT SPACES (RKHS) 47

is an element of (ker(f))� in order to obtain a representation of f(y). Thus, the inner product

0 = ⟨ x®
∈(ker(f))�

, y − f(y)
f(x)x

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈ker(f)

⟩

H

(by definition 58)

= ⟨x, y⟩ − ⟨x, f(y)
f(x)x⟩

H

(linearity of inner product)

= ⟨x, y⟩ − f(y)
f(x) ⟨x,x⟩H (linearity of inner product),

(4.21)

which is equivalent to

f(y) = ⟨x, y⟩H
∥x∥2 f(x) (norm induced by inner product)

= ⟨xf(x)∥x∥2 , y⟩H (linearity of inner product),
(4.22)

has to be considered. Equation 4.22 implies that

ψ(xf(x)∥x∥2) = f. (4.23)

As a consequence, the above procedure allows for finding an element ψ−1(f) ∈ H for every f ∈ H′,
meaning that ψ is surjective.

Remark 61. (Dual of a Hilbert space) One direct implication of the Riesz representation the-
orem (Theorem 60) is that the dual of a Hilbert space H is a Hilbert space, with point-wise
addition, point-wise scalar multiplication and the inner product

⟨⋅, ⋅⟩H′ ∶ H′ ×H′ → R ∶ (f, g) ↦ ⟨ψ−1(f), ψ−1(g)⟩
H
, (4.24)

where ψ is the isomorphism defined by Riesz representation theorem. The function, given by Def-
inition 4.24, inherits all properties from the inner product of H and therefore is an inner product
itself. Additionally, the completeness of H is inherited. We are going to use this observation
when we consider Hφ later in this section.

4.2.3 Functional Analysis perspective

If not stated otherwise, let X be an arbitrary set and H a Hilbert space of real-valued functions
on X in the following. The notion of Hilbert spaces allows for working with functions in the
same way as with vectors. The similarity between vectors and functions can be further increased
by considering functions that can be defined point-wisely. A vector v ∈ Rn for example can be
interpreted as a point-wise function from a subset of N to it’s field R, namely

v ∶ {1, . . . , n} ⊆ N→ R ∶ i↦ vi. (4.25)

In order to study spaces of point-wise functions we define evaluation functionals. If the
evaluation functionals are bounded we will be in a similar situation as in vector spaces.

Definition 62. (Evaluation functional) An evaluation functional over the Hilbert space of func-
tions H is a linear functional that evaluates a function f ∈ H at a point x ∈ X ,

Lx ∶ H → R ∶ f ↦ f(x). (4.26)

48 CHAPTER 4. A GLANCE AT KERNEL THEORY

Evaluation functionals are elements of the dual space of H, since they are linear functionals
from H to R.

Definition 63. (Reproducing kernel Hilbert space - RKHS) Let Lx denote the evaluation func-
tional for the point x ∈ X . According to Akhiezer and Glazman (1993), we call a Hilbert space
of functions H a reproducing kernel Hilbert space (RKHS) if all evaluation functionals Lx are
continuous or, equivalently, if for all x ∈ X , Lx is a bounded operator, i.e.

∀x ∈ X ∶ Lx ∈ H′ ∶ ∃M > 0 ∶ ∀f ∈ H ∶ ∣Lx[f]∣ ≤M∥f∥H. (4.27)

In the following, we will learn a more intuitive, however equivalent, way to characterize
RKHS.

Definition 64. (Reproducing kernel) A reproducing kernel (r.k.) is a function k ∶ X × X → R,
which satisfies the properties:

1. k(⋅, x) ∈ H for any x ∈ X and

2. the reproducing property, namely ∀f ∈ H ∶ ∀x ∈ X ∶ f(x) = ⟨f, k(⋅, x)⟩H .

Every Hilbert space with a r.k. is a RKHS.

Theorem 65. (RKHS and r.k.) For a Hilbert space of real-valued functions H the following
statements are equivalent:

1. H has a reproducing kernel.

2. H is a reproducing kernel Hilbert space.

Proof. The following proof is similar to the one by Tan (2014).
(1.) ⇒ (2.): Let k denote the reproducing kernel of H. Then, for an arbitrary x ∈ X ,

consider the evaluation functional Lx. We want to show that Lx is bounded, therefore we
consider ∣Lx[f]∣ for an arbitrary function f ∈ H. The statement follows from the derivation

∣Lx[f]∣ = ∣f(x)∣ (by definition)
= ∣ ⟨f, k(⋅, x)⟩H ∣ (reproducing property, Def. 64)
≤ ∥f∥H ∥k(⋅, x)∥H

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶M>0

(Cauchy-Schwarz inequality).
(4.28)

H is a RKHS, i.e. all evaluation functionals are bounded operators, since f ∈ H and x ∈ X were
chosen arbitrarily and the fact that M does not depend on f .

(2.) ⇒ (1.): Let H be a RKHS, then we know that for every point x ∈ X the evaluation
functional Lx is bounded and an element of H′. Therefore the isomorphism H ≃ H′, defined by
the Riesz representation theorem (Theorem 60), allows us to find an element kx ∈ H with

Lx = ⟨kx, ⋅⟩H (4.29)

for every x ∈ X . Elements of H are functions from X to R by definition and therefore kx(y) can
be written as

kx(y) = Ly[kx] = ⟨ky, kx⟩H . (4.30)
Subsequently, using the symmetry of the inner product for a mathematically convenient notation,
we can define a function

k ∶ X × X → R ∶ (x, y) ↦ ⟨kx, ky⟩H , (4.31)
that satisfies

4.2. REPRODUCING KERNEL HILBERT SPACES (RKHS) 49

1. k(⋅, x) ∈ H for any x ∈ X and

2. the reproducing property, namely ∀f ∈ H ∶ ∀x ∈ X ∶ f(x) = ⟨f, k(⋅, x)⟩H .

Consequently k is a reproducing kernel.

The uniqueness of the r.k. corresponding to a RKHS can be shown without much additional
effort.

Theorem 66. (Unique correspondence) If for a Hilbert space H a r.k. exists, it will be unique.

Proof. Let k and k̂ be reproducing kernels of a Hilbert space H, by exploiting the symmetry
and reproducing property of k and k̂, the identity k = k̂, can be shown. The derivation

k(x, y) = ⟨k(⋅, y), k̂(⋅, x)⟩
H

(Definition 64)
= ⟨k̂(⋅, x), k(⋅, y)⟩

H
(symmetry of inner product)

= k̂(y, x) (Definition 64)
= ⟨k̂(⋅, y), k̂(⋅, x)⟩

H
(Definition 64)

= k̂(x, y) (symmetry i.p. & Def. 64),

(4.32)

which is obtained by repeatedly applying of the reproducing properties of k and k̂ and the
symmetry of the inner product, is true for all x, y ∈ X . Thus, Derivation 4.32 proves the
statement k = k̂.

4.2.4 Positive Definite Kernels

After seeing the appealing properties of reproducing kernel Hilbert spaces, we would like to
access them in a convenient way. Therefore, we study a class of bivariate functions, namely
positive definite kernels, and show that there is a one-to-one correspondence between positive
definite kernels and RKHSs.

Definition 67. (Positive definite kernel) A symmetric function k ∶ X ×X → R is called a positive
definite kernel (p.d.) on X if

∀n ∈ N, x1, . . . , xn ∈ X , c1, . . . , cn ∈ R ∶
n

∑
i,j=1

cicjk(xi, xj) ≥ 0 (4.33)

holds. Positive definite kernels are often referred to as Mercer kernels, because Mercer also
considered positive definite kernels in Mercer (1909).

The following theorem connects RKHSs and p.d. kernels.

Theorem 68. (Moore-Aronszajn Theorem) Aronszajn (1950) has shown that

1. for every RKHS, a corresponding p.d. kernel exists and

2. that for every p.d. kernel k on X ×X , a (unique) RKHS exists.

Proof. (1.): For a RKHS H we have already got to know a good candidate function that could
be a p.d. kernel, namely the reproducing kernel function

k ∶ X × X → R ∶ ⟨kx, ky⟩H , (4.34)

50 CHAPTER 4. A GLANCE AT KERNEL THEORY

where kx is the element in H with Lx = ⟨kx, ⋅⟩H. k is symmetric, by definition, because every
inner product is symmetric, when the corresponding field is R. Let n be a natural number,
x1, . . . , xn ∈ X and c1, . . . , cn ∈ R, then the positive definiteness follows from the derivation

n

∑
i,j=1

cicjk(xi, xj) =
n

∑
i,j=1

cicj ⟨kxi , kxj ⟩H (Equation 4.34)

= ⟨
n

∑
i=1
cikxi ,

n

∑
j=1

cjkxj⟩
H

(bilinearity of inner product)

≥ 0 (p.d. of inner product).

(4.35)

Therefore, the reproducing kernel k, defined by Equation 4.34 is a symmetric, positive definite
kernel.

(2.): Now we want to proof that - given a p.d. kernel k - we can construct a RKHS. The
construction used will be similar to the one by Hofmann et al. (2006). Note that for every x ∈ X
the function k(⋅, x) has domain X and range R. So far, we have always considered RKHSs of
functions from X to R. It is obvious that the set

Hpd ∶= {
n

∑
i=1
αik(⋅, xi) ∶ n ∈ N, α1, . . . , αn ∈ R and x1, . . . , xn ∈ X} (4.36)

only contains functions from X to R. It is straightforward to prove that Hpd is a R-vector space,
by checking the vector space axioms. We skip this part and claim that the vector space axioms
follow from the linearity of the sum. In order to make Hpd a Hilbert space, we need an inner
product. It can be shown that the function

⟨⋅, ⋅⟩Hpd ∶ Hpd ×Hpd → R ∶ (f, g) ↦
m

∑
i=1

n

∑
j=1

αiβjk(xi, xj), (4.37)

for f and g in Hpd, with the representations

f =
m

∑
i=1
αik(⋅, xi), where m ∈ N, α1, . . . , αn ∈ R and x1, . . . , xm ∈ X (4.38)

and

g =
n

∑
j=1

βjk(⋅, xj), where n ∈ N, β1, . . . , βn ∈ R and x1, . . . , xn ∈ X , (4.39)

defines an inner product on Hpd. Most inner product axioms can be checked quickly:

1. ⟨⋅, ⋅⟩Hpd is symmetric, because the multiplication and addition in R are commutative and
k is symmetric.

2. The bilinearity of ⟨⋅, ⋅⟩Hpd also follows from the distributivity of multiplication and addition
in R.

3. The positive definiteness, i.e. ⟨f, f⟩Hpd ≥ 0 for all f ∈ Hpd follows directly from the positive
definiteness of k.

It remains to be shown that ⟨f, f⟩Hpd = 0 implies f = 0, which would be straightforward if k

4.2. REPRODUCING KERNEL HILBERT SPACES (RKHS) 51

would have the reproducing property. If k was a reproducing kernel, the derivation

0 ≤ f(x)2 (Trick 17)
= ⟨f, k(⋅, x)⟩2

Hpd
(reproducing property, Def. 64)

= (∥f∥Hpd∥k(⋅, x)∥Hpd)2 (Cauchy-Schwarz inequality)
= ⟨f, f⟩Hpd ⟨k(⋅, x), k(⋅, x)⟩Hpd (norm induced by inner product)
= ⟨f, f⟩Hpd k(x,x)

´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
>0 for some x

(reproducing property, Def. 64)

(4.40)

would imply that f(x) = 0 only if ⟨f, f⟩ = 0, for all x ∈ X .
In order to complete the proof that Hpd is a Hilbert space, the completeness of Hpd with

respect to the metric induced by ⟨⋅, ⋅⟩Hpd remains to be shown. According to Definition 53, a
metric space M is complete if every Cauchy sequence in M converges in M. Let (fi)i∈N be a
Cauchy sequence in Hpd, then, by Equation 4.40, we have that

(fr(x) − fs(x))2 ≤ ∥fr − fs∥2
Hpd

k(x,x),∀r, s ∈ N and x ∈ X . (4.41)

Therefore, (fi)i∈N converges to a real-valued function on X and adding the limits of all Cauchy
sequences and extending the definition of the inner product accordingly would complete Hpd 1.

Finally, we will show that k is really a reproducing kernel of Hpd, then, by Theorem 65, we
will know that Hpd is a reproducing kernel Hilbert space. First, we note that

⟨k(⋅, x), k(⋅, y)⟩Hpd = k(x, y) (4.42)

for x and y in X . Next we consider f(x) for an arbitrary f ∈ H,

f(x) =
m

∑
i=1
αik(x,xi) (Equation 4.38)

=
m

∑
i=1
αi ⟨k(⋅, x), k(⋅, xi)⟩Hpd (Equation 4.42)

= ⟨k(⋅, x),
m

∑
i=1
αik(⋅, xi)⟩

Hpd

(bilinearity of inner product)

= ⟨k(⋅, x), f⟩Hpd (Definition 4.37).

(4.43)

According to Equation 4.34, k satisfies the reproducing property. Additionally, k(⋅, x) is an
element of Hpd for all x ∈ X . Therefore the p.d. kernel k ∶ X × X → R is a reproducing kernel of
Hpd.

Theorem 68 allows for the convenient access and construction of reproducing kernel Hilbert
spaces.

Remark 69. (Construction of RKHS) Every operation on and between p.d. kernels that pre-
serves their positive definiteness results in another p.d. kernel, which corresponds to a different
RKHS. For the p.d. kernels

k1 ∶ A ×A ↦ R (4.44)

and
k2 ∶ B × B ↦ R, (4.45)

1For an extensive version of this step please have a look at Hofmann et al. (2006).

52 CHAPTER 4. A GLANCE AT KERNEL THEORY

defined on the sets A and B, the point-wise addition and multiplication of the p.d. kernels,

k+ ∶ (A × B) × (A × B) ↦ R ∶ ((a1, b1), (a2, b2)) ↦ k1(a1, a1) + k2(b1, b2) (4.46)

and
k∗ ∶ (A × B) × (A × B) ↦ R ∶ ((a1, b1), (a2, b2)) ↦ k1(a1, a1) ∗ k2(b1, b2), (4.47)

yield p.d. kernels defined on the Cartesian product of the sets A×B. Therefore, using the point-
wise addition or multiplication of p.d. kernels RKHSs for almost arbitrary input spaces can be
obtained2.

4.2.5 Feature Space Mappings

Feature space mapping A feature space mapping φ from X to a Hilbert space Hφ is defined
by a set of component functions {φ1, . . . φd ∈ RX }, sometimes called a dictionary, where
d ∈ N ∪∞.

When we studied the kernel trick we have derived positive definite kernels from feature maps
φ, namely by considering inner products in feature space.

Proposition 70. (Feature map ⇒ p.d. kernel) For every feature map φ ∶ X → Hφ the bivariate
function

k ∶ X × X → R ∶ (x, y) ↦ ⟨φ(x), φ(y)⟩Hφ (4.48)

is a p.d. kernel.

Proof. The function given by Equation 4.48 is symmetric, by the definition of the inner product,
and positive definite, since

n

∑
i,j=1

cicjk(xi, xj) =
n

∑
i,j=1

cicj ⟨φ(xi), φ(xj)⟩Hφ (Definition 4.48)

= ⟨
n

∑
i=1
ciφ(xi),

n

∑
j=1

cjφ(xj)⟩
Hφ

(bilinearity of inner product)

>= 0 (p.d. of inner product)

(4.49)

holds for all n ∈ N, x1, . . . , xn ∈ X and c1, . . . , cn ∈ R.

As a consequence of Theorem 70, a unique RKHS exists by the Moore-Aronszajn Theorem
68. Earlier, in Equation 3.29, we denoted that space as Hk. Additionally, it is easy to see that
the mapping

φ ∶ X → H ∶ x↦ k(⋅, x) (4.50)

is a feature space mapping, for a reproducing kernel k with RKHS H.

In order to close the loop and to ultimately prove that the kernel trick is legit, it only re-
mains to be shown that the hypothesis space of linear functions in the feature space Hφ and
the RKHS Hk are equivalent.

2A the proof of the positive definiteness of k+ and k∗ and a list of other operations that preserve the positive
definiteness of kernels are given by Bishop (2006).

4.2. REPRODUCING KERNEL HILBERT SPACES (RKHS) 53

Proposition 71. (Hφ is a RKHS) Given a feature space mapping φ ∶ X → Hφ the set

Hφ = {g ∶ X → R ∶ g = f ○ φ, f ∈ H′
φ}

= {g ∶ X → R ∶ g = ⟨w,φ(⋅)⟩Hφ , with w = ψ−1(f) and f ∈ H′
φ}

(Theorem 60)
(4.51)

is a RKHS.
Proof. By definition of the feature space mapping φ (Definition 18), Hφ is a Hilbert space.
According to Remark 61, the dual of a Hilbert space is a Hilbert space. Therefore H′

φ is a
Hilbert space. Elements of Hφ are compositions of φ and functions H′

φ, i.e. g ∈ Hφ can be
written as f ○ φ, with f ∈ H′

φ. Together with the addition,

+ ∶ Hφ ×Hφ →Hφ ∶ (g, ĝ) ↦ (f + f̂) ○ φ, (4.52)

the scalar multiplication
⋅ ∶ R ×Hφ →Hφ ∶ (λ, g) ↦ (λf) ○ φ (4.53)

and the inner product

⟨⋅, ⋅⟩Hφ
∶ Hφ ×Hφ → R ∶ (g, ĝ) ↦ ⟨f, f̂⟩

H′
φ

, (4.54)

where g = f ○ φ and ĝ = f̂ ○ φ, the space Hφ is a Hilbert space. Again instead of checking all
vector space axioms, we claim that the defined addition, Equation 4.52, and scalar multiplication,
Equation 4.53, inherit the linear structure from the addition and scalar multiplication in H′

φ.
Analogously, we claim that the inner product properties are inherited from the inner product in
H′
φ.
In order to show that Hφ is a RKHS, we check whether the evaluation functionals are

bounded, i.e. whether

∀x ∈ X ∶ Lx ∈ H ′
φ ∶ ∃M > 0 ∶ ∀g ∈ Hφ ∶ ∣Lx[g]∣ ≤M∥g∥Hφ

(4.55)

is satisfied. For an arbitrary element x ∈ X and an arbitrary f ∈ Hφ consider

∣Lx[g]∣ = ∣g(x)∣ (Definition 62)
= ∣f(φ(x))∣ (Definition 3.28)

= ∣⟨w,φ(x)⟩Hφ ∣ (Equation 4.51)

≤ ∥w∥Hφ ∥φ(x)∥Hφ
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∶M

(Cauchy-Schwarz inequality)

=M∥ψ−1(f)∥Hφ (Theorem 60)
=M∥f∥H′

φ
(Remark 61)

=M∥g∥Hφ
(Definition 4.54),

(4.56)

which implies that every evaluation functional is bounded.

Proposition 72. (Hk⇔Hφ) Given a feature space mapping φ ∶ X → Hφ the RKHS

Hφ = {g ∶ X → R ∶ g = f ○ φ, f ∈ H′
φ} (4.57)

and the RKHS Hk

Hk = {g ∶ X → R ∶ g =
n

∑
i=1
αik(xi, ⋅), for n ∈ N, x1, . . . , xn ∈ X , α1, . . . αn ∈ R}, (4.58)

corresponding to the p.d. kernel k ∶= ⟨φ(⋅), φ(⋅)⟩Hφ, are equivalent.

54 CHAPTER 4. A GLANCE AT KERNEL THEORY

Proof. The equivalence of two sets can be proved by showing that they contain each other. Let’s
start with the simple direction.

"⊂": We consider g ∈ Hk, with the representation

g =
n

∑
i=1
αik(⋅, xi), (4.59)

where n ∈ N, αi ∈ R and xi ∈ X for i ∈ {1, . . . , n}. By using the definition of k and the bilinearity
and symmetry of the inner product,

g =
n

∑
i=1
αik(⋅, xi)

=
n

∑
i=1
αi ⟨φ(⋅), φ(xi)⟩Hφ (Equation 4.48)

= ⟨φ(⋅),
n

∑
i=1
αiφ(xi)⟩Hφ (bilinearity of inner product)

= ⟨
n

∑
i=1
αiφ(xi)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈Hφ

, φ(⋅)⟩Hφ (symmetry of the inner product),

(4.60)

we observe that g ∈ Hφ. g was chosen arbitrarily, which implies Hk ⊂ Hφ.
"⊃": Now we consider h ∈ Hφ of the form

h = ⟨w,φ(⋅)⟩ , (4.61)

in which w ∈ Hφ. Because Hφ is a Hilbert space, w can be represented as linear combination

w =
m

∑
j=1

βjvj , (4.62)

in which v1, . . . , vm are elements of Hφ. Given that every vj ∈ Hφ can be written as vj = φ(xj)
for j ∈ {1, . . . ,m}, the statement Hφ ⊂ Hk follows from Derivation 4.60.

All in all we have shown that every RKHS has a unique reproducing kernel and that the
equivalence chain ”reproducing kernel ⇔ positive definite kernel ⇔ kernel defined by feature
map” holds. In addition, we proved an alternative equivalent way from feature space mapping
to RKHS, namely by considering linear hyperplanes in the feature space. Hence, all three
perspectives illustrated in Figure 4.1 are equivalent.

Due to of the correspondence between kernels and inner products in feature spaces, kernel
functions are often interpreted as similarity functions. The inner-product is closely related to
the angle between the two vectors of interest

cos(α) = ⟨u, v⟩
∥u∥∥v∥ , (4.63)

where u and v are elements of the inner-product space and α denotes the angle between them.
Looking at corresponding kernel function

k(u, v) = cos(α)∥u∥∥v∥ (4.64)

from that point of view reveals that the kernel function reaches its maximal value when the
angle between the two vectors is equal to zero, in other words when the cosine of the angle is
equal to one.

4.2. REPRODUCING KERNEL HILBERT SPACES (RKHS) 55

4.2.6 Mercer Theorem - a Fourth View

Let’s briefly consider another way to find a feature map corresponding to a p.d. kernel, namely
the ”integral equations”-way. As a side effect we thereby show that the mapping x ↦ k(⋅, x)
defined in Section 4.2.5 is not unique. According to the Mercer Theorem for every positive
definite kernel, a feature space/RKHS can be found. Recall the concept of linear maps.

Definition 73. (Linear map) A linear map f is a mapping f ∶ V → W between two K-vector
spaces V and W that fulfills the following properties: Let x, y ∈ V and λ ∈K.

1. f(x + y) = f(x) + f(y)

2. f(λx) = λf(x)

3. f(0) = 0

In the case that V = W the map is called linear operator or endomorphism of V.

The following version of the Mercer theorem is taken form Gu (2008).

Theorem 74. (Mercer Theorem) Suppose k is a continuous symmetric non-negative definite
kernel and

Tk ∶ L2([a, b]) → L2([a, b]) ∶ φ↦ ∫
[a,b]

k(⋅, s)φ(s)ds (4.65)

is a linear operator on functions. Then there is an orthonormal basis (e1, . . . , ek) of L2 [a, b]
consisting of eigenfunctions {ei}∞i=1 of Tk such that the corresponding sequence of eigenvalues
λ1, . . . , λk is nonnegative. The eigenfunctions corresponding to non-zero eigenvalues are contin-
uous on [a, b] and k has the representation

k(s, t) =
∞

∑
i=1
λiei(s)ei(t) (4.66)

where the convergence is absolute and uniform.

Informally, the Mercer Theorem states that for every positive definite kernel a feature space
can be found, namely by spectral decomposition of Tk. Despite the fact that in practice the
basis representation of the RKHS used in the Mercer Theorem is not the one of choice, the
Mercer theorem delivers the theoretical foundation or legitimation of the kernel trick. In a
certain sense in the machine learning context the Mercer theorem can be seen as a moralistic
one, guaranteeing that the kernel trick is a legit operation. Utilizing the result of the Mercer
theorem a feature map

φ ∶ X → L2[a, b] ∶ x↦ (
√
λ1e1(x), . . . ,

√
λkek(x))

can be found.

Mercer Theorem Finite Dimensional Analog

For an easier understanding of the underlying idea behind the Mercer theorem it can be helpful
to consider it in a finite dimensional case. Let X be Rn with the basis ⟨x1, . . . , xn⟩, then the
kernel function k becomes a matrix Kij = k(xi, xj) and functions φ ∶ X → R ∈ RX become rows
(φ1, . . . , φn) ∈ R1xn. Consequently the application of a linear operator becomes a matrix vector
multiplication

Tk[φ] ∶ RX → RX ∶Kφ′.

56 CHAPTER 4. A GLANCE AT KERNEL THEORY

In order to emphasize the similarity with the general case of the Mercer theorem it makes sense
to consider

Tk[φ]i =
n

∑
s=1

Kisφs.

Since K is a symmetric positive definite matrix the spectral theorem can be applied to
diagonalize it

K = Pdiag(λ1, ...λn)P ′.

Therefore
Kij = (Pdiag(λ1, ...λn)P ′)ij

=
n

∑
t=1
λtPtiPtj .

To sum up by exploiting the fact that every symmetric positive definite matrix is a normal
matrix (K ′K = KK′) a orthonormal basis of X , where K can be diagonalized, can be found
by application of the spectral theorem for normal functions. After the diagonalization step it is
straightforward to find a feature map

ψ ∶ X → RX ∶ x↦ (
√
λ1P1−x, . . . ,

√
λnPn−x),

for which the property
k(x, y) = ⟨ψ(x), ψ(y)⟩ , x, y ∈ X

holds.

4.3 RKHS and Regularized Risk Minimization
So far, we have considered the whole input space X as known, however, this is not the case in
most machine learning problems. Typically, only a small fraction of the whole space, namely
the training set, is known. At this point the question, whether the known subset of the whole
space is sufficient to represent the optimal solution of the machine learning problem, which
can be characterized by a loss function and a regularized risk functional, rises naturally and
is answered by the representer theorem. The representer theorem basically states that - under
certain conditions - the training data points are sufficient to represent the optimal solution of
the machine learning problem. Therefore, the representer theorem can be utilized to determine
whether a kernel version of certain machine learning problems exists or not.

Theorem 75. (Representer Theorem) If the hypothesis space H is the RKHS defined by a p.d.
kernel k, then each minimizer f∗ ∈ H of the regularized risk functional

Rreg[f ; z] ∶= 1
m

m

∑
i=1
c(f(xi), yi) + λΩ(∥f∥H), (4.67)

where z = (x,y) is a training set of size m, c ∶ R × Y → [0,∞) a loss function, λ > 0 a trade-off
parameter and Ω a strictly monotonic increasing function, admits a representation of the form

f∗ =
m

∑
i=1
αik(⋅, xi). (4.68)

Proof. Let S denote the subspace given by the span of kernel evaluations at training points

S ∶= {
m

∑
i=1
αik(⋅, xi) ∶ α1, . . . , αm ∈ R}. (4.69)

4.3. RKHS AND REGULARIZED RISK MINIMIZATION 57

In order to proof the representer theorem we consider the isomorphism between S ⊕ S� and
H given by Theorem 59. Consequently, every element f ∈ H can be represented as a linear
combination of kernel evaluations at the training points and an orthogonal part

f =
m

∑
i=1
βik(⋅, xi)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈S

+ g
®
∈S�

, (4.70)

where β1, . . . , βm ∈ R. It is easy to see that every function evaluation at a training point x ∈ x is
independent of the orthogonal part, i.e.

f(x) = ⟨
m

∑
i=1
βik(⋅, xi) + g, k(⋅, x)⟩

H

(reproducing property, Def. 64)

= ⟨
m

∑
i=1
βik(⋅, xi), k(⋅, x)⟩

H

+ ⟨g, k(⋅, x)⟩H
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=0

(linearity of inner product)

= ⟨
m

∑
i=1
βik(⋅, xi), k(⋅, x)⟩

H

(g ∈ S� and k(⋅, x) ∈ S).

(4.71)

Considering ∥f∥H yields Ω(∥∑mi=1 βik(⋅, xi)∥H) ≤ Ω(∥f∥H), since

∥f∥H = ∥
m

∑
i=1
βik(⋅, xi) + g∥H (Equation 4.70)

=
¿
ÁÁÀ⟨

m

∑
i=1
βik(⋅, xi) + g,

m

∑
i=1
βik(⋅, xi) + g⟩

H

(norm induced by inner product)

=
¿
ÁÁÁÁÁÀ

∥
m

∑
i=1
βik(⋅, xi)∥2

H
+ 2 ⟨

m

∑
i=1
βik(⋅, xi), g⟩

H
´¹¹¸¹¹¶

=0

+∥g∥2
H

(linearity of inner product)

=
¿
ÁÁÀ∥

m

∑
i=1
βik(⋅, xi)∥2

H
+ ∥g∥2

H
(orthogonal complement)

≥
¿
ÁÁÀ∥

m

∑
i=1
βik(⋅, xi)∥2

H
(∥g∥2

H ≥ 0)

= ∥
m

∑
i=1
βik(⋅, xi)∥H

(4.72)
and Ω is a strictly monotonic increasing function. Hence every minimizer f∗ of the regularized
risk functional Rreg[⋅; z] must live in S.

58 CHAPTER 4. A GLANCE AT KERNEL THEORY

Chapter 5

Structured Output Learning

5.1 Introduction

Up to this point we mainly have considered real valued machine learning problems like classi-
fication and regression. We have studied methods that can handle those problems pretty well,
namely the SVM for classification and a regularized version of regression. Both methods owe
part of their success to the fact that non-linear hypothesis spaces can be utilized implicitly and
efficiently thanks to the kernel trick.

Recently, driven by the requirements imposed by practical learning tasks as, for instance,
learning tasks related to natural language processing or computational biology, a new stream of
machine learning methods, the so-called structured output learning or structured output pre-
diction methods, emerged. Many structured learning tasks involve labeling a set of inter-related
instances. Popular example tasks are optical character recognition, part-of-speech tagging or
semantic image segmentation. In optical character recognition and part-of-speech tagging a se-
quence of input objects x = (x1, . . . , xt), to be more accurate a sequence of images of characters
and a sequence of words, is given and a label sequence of equal length y = (y1, . . . , yt), one char-
acter per image and one word category per word, is required. Clearly, in both cases there are
dependencies within the output structure: in optical character recognition certain characters are
more likely to occur next to other characters and in part-of-speech tagging the rules of grammar
enforce certain correlations on the word categories. Similarly, in semantic image segmentation
a semantic label has to be assigned to every pixel of the image and frequently the assumption
is made, that close by pixels tend to have the same label. Tsochantaridis et al. (2005b) summa-
rize cases, where the outputs describe a configuration over components, as structured learning
problems with macro-labels. However, the macro-label case doesn’t cover all structured output
problems. For example, in semantic parsing for a given sequence of words a corresponding parse
tree or in classification with taxonomies for an input a the corresponding path in a taxonomy
tree is required.

Although there is no concise definition of structured output learning in the main literature
to the best of my knowledge, the key observation that has to be made is that in every structured
output learning task the outputs possess a certain kind of structure, i.e. various dependencies
between the components that compose the outputs exist.

It is well known that naive solutions, involving the decomposition of the structured learning
task into independent scalar-valued tasks, fail to produce viable solutions. In many cases this is
caused by the cardinality of the output set. For example, if we have an alphabet Σ and macro-
labels of the shape y ∈ Σt, the naive solution, i.e. to solve ∣Σ∣t independent 1-vs-all classification
tasks, will be infeasible if the number ∣Σ∣t is sufficiently large. Even if the resulting problem is
feasible the results might be poor in case there is a certain degree of correlation between the

59

60 CHAPTER 5. STRUCTURED OUTPUT LEARNING

outputs.
Despite the fact that graphical models 1 provide a framework to incorporate dependencies

of various kinds, we will proceed with the ”kernel methods” line of thinking and consider exten-
sions of the binary SVM to the structured output case, by utilizing and extending the concepts
that enabled us to work with arbitrary inputs. More precisely, we will consider so-called dis-
criminant or compatibility functions that measure the compatibility between inputs and outputs
as hypothesis functions, by approximating them linearly in a joint feature space into which the
input-output pairs are embedded. Inference corresponds to maximizing the learned discriminant
function with respect to the output variable. In order to learn discriminant functions we will
have a look at the generalization of the binary SVM performed by Tsochantaridis et al. (2005b)
and at simplifications.

5.2 Background

In structured output learning problems the objective is to find a function

f ∶ X → Y, (5.1)

that associates an element of an arbitrary input set X with an element of an structured output
set Y. In the supervised learning scenario that function should minimize a risk functional

R[f] = ∫
X×Y

c(f(x), y)dP(X ,Y)(x, y) (5.2)

or in most practical cases a regularized empirical risk functional

Rreg[f ; z] = 1
m

m

∑
i=1
c(f(xi), yi) + λΩ(∥f∥H), (5.3)

where c is a loss function, z is a training set of size m and Ω(∥f∥H) a regularizing term.
In the following we are examining the two different ways of designing suitable hypothesis

functions that dominate the literature.

5.2.1 The Intuitive Approach

Continuing the line of thinking that we have used so far, namely to represent the arbitrary inputs
by feature vectors which are elements of a Hilbert space and to consider linear operators within
that, it would be intuitive to define an analogon to the feature space in order to represent the
elements of the output set, let’s say a label space, and consequently, to consider linear operators
between the feature space and the label space. Let φ be a feature space mapping, ψ be a label
space mapping and Hφ and Hψ the Hilbert spaces induced by φ and ψ, respectively; then such
a linear operator would be

F ∶ Hφ →Hψ ∶ φ(x) ↦ F (φ(x)). (5.4)

In the finite dimensional case F can be expressed by a matrix-vector multiplication

F (φ(x)) ∶=Wφ(x). (5.5)

In case this has not become clear, please have a look at the following example.
1The interested reader is referred to Taskar et al. (2003), who combine the principles of the SVM and graphical

models in an impressive way in order to get the best of both worlds.

5.2. BACKGROUND 61

Example 76. (Linear mapping) If Hφ ∶= Rn and Hψ ∶= R, a the row vector w′ ∈ R1×n defines
the linear map Rn → R ∶ x ↦ w′x. Analogously, if Hφ ∶= Rn and Hψ ∶= Rm, a linear map from
Rn to Rm is defined by a matrix W ∈ Rm×n ∶ Rn → Rm ∶ x↦Wx.

An important observation that has to be made here, is that even if the optimal label vector
in Hψ is found for a certain input x ∈ X using F , the corresponding element of the output set
will still be unknown. Therefore in order to obtain an actual prediction for an input x ∈ X the
pre-image problem

y∗(x) = arg min
y∈Y

∥F (φ(x)) − ψ(y)∥Hψ (5.6)

needs to be solved. Hence, for every prediction the whole output set needs to be considered in
order to find the most similar output to the predicted label vector F (φ(x)). Accordingly, the
functions of interest take the form

f ∶ X → Y ∶ x↦ arg min
y∈Y

∥F (φ(x)) − ψ(y)∥Hψ . (5.7)

The necessity of the solution of this pre-image problem makes structured output learning sig-
nificantly harder than the real valued learning problems. One of the earliest implementations
of such a scheme is the so-called Kernel Dependency Estimation introduced by Weston et al.
(2002), where a linear mapping between a feature space induced by a similarity kernel and a
label space induced by a loss function kernel is learned. Similarly, in the Maximum Margin
Regression proposed by Szedmak et al. (2005) and in the extension of the Minimal Norm In-
terpolation made by Micchelli and Pontil (2005) separate representation spaces for inputs and
outputs are considered. Despite this being an intuitive and straightforward approach to model
the problem, the majority of the structured learning work focuses on a slightly more general
approach.

5.2.2 The General Approach

Instead of considering separate representation spaces for inputs and outputs in the generaliza-
tions of the SVM by Tsochantaridis et al. (2005b) and Weston et al. (2007) and in the Joint
Kernel Support Estimation introduced by Lampert and Blaschko (2009) a joint feature space
considered. In order to understand why the joint feature space makes sense, we look at Equation
5.6 in more detail. Analogously to Weston et al. (2007) we consider normalized outputs only, i.e.
∥ψ(y)∥Hψ = 1 for all y ∈ Y, in order to guarantee the well-posedness of the pre-image problem.
A simple derivation

y∗(x) = arg min
y∈Y

∥F (φ(x)) − ψ(y)∥Hψ
´¹¹¹¸¹¹¹¶

≥0

= arg min
y∈Y

∥F (φ(x)) − ψ(y)∥2
Hψ

(strict monotony of ⋅2)

= arg min
y∈Y

⟨F (φ(x)) − ψ(y), F (φ(x)) − ψ(y)⟩Hψ (norm induced by inner product)

= arg min
y∈Y

∥F (φ(x))∥2
Hψ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
const.

−2 ⟨F (φ(x)), ψ(y)⟩Hψ + ∥ψ(y)∥2
Hψ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=1

(bilinearity of the inner product)

= arg max
y∈Y

⟨F (φ(x)), ψ(y)⟩Hψ (normalized outputs),

(5.8)
shows not only that the solution to the pre-image problem is the y ∈ Y aligned with F (φ(x)),
but also illuminates the problem from a different angle. The expression ⟨F (φ(x)), ψ(y)⟩Hψ can

62 CHAPTER 5. STRUCTURED OUTPUT LEARNING

be interpreted as a bilinear similarity or compatibility function

C ∶ Hφ ×Hψ → R ∶ (φ(x), ψ(y)) ↦ ⟨F (φ(x)), ψ(y)⟩Hψ , (5.9)

since the function F is linear and the inner product is bilinear. As we know from Appendix 5.A
a linear compatibility function

C̃ ∶ Hφ ⊗Hψ → R, (5.10)

that satisfies the property Ĉ(φ(x) ⊗ ψ(y)) = C(φ(x), ψ(y)) for all φ(x) ∈ Hφ and ψ(y) ∈ Hψ,
can be found by considering the tensor product of Hφ and Hφ. Therefore, the back projection
involved in the pre-image problem can be interpreted as a maximization of a compatibility
function, which is approximated linearly in a joint representation space HΨ, where HΨ is defined
as the tensor product of Hφ and Hφ in the above example. As suggested by it’s name, the
compatibility function measures the compatibility of input-output pairs, i.e. evaluated at an
input and the corresponding output the compatibility function should be maximal. Note that
the tensor product of Hφ and Hψ is a rather simple example for a joint feature space. In general
compatibility functions that are linear in an arbitrary joint feature space

C ∶ X × Y → R ∶ (x, y) ↦ ⟨w,Ψ(x, y)⟩HΨ
, (5.11)

where Ψ is a joint feature space mapping from X ×Y to a Hilbert space HΨ, are of interest. As
a consequence, hypothesis functions that can be expressed in this fashion take the form

f ∶ X → Y ∶ x↦ arg max
y∈Y

C (x, y), (5.12)

and are a true generalization of the ones in Equation 5.7. Additionally, the linear compatibility
function on a joint feature space captures the prediction functions that originate from graphical
model based approaches, see Nowozin and Lampert (2011). When a graphical model is used for
prediction usually a so-called energy function is minimized. The corresponding compatibility
function is obtained by taking the negative of the energy function.

5.2.3 Learning with Joint Feature Maps

Learning a function f of the shape given by Equation 5.12 corresponds to finding a suitable
compatibility function C , namely the minimizer of

Rreg[f ; z] = 1
m

m

∑
i=1
c(f(xi), yi) + λΩ(∥f∥H)

= 1
m

m

∑
i=1
c(arg max

y∈Y
C (xi, y), yi) + λΩ(∥C ∥HΨ).

(5.13)

According to Theorem 71, compatibility functions given by Equation 5.11 live in a reproduc-
ing kernel Hilbert space HΨ since they are linear forms on a Hilbert space HΨ and X × Y is a
set. Therefore, thanks to the reproducing property every evaluation of a compatibility function
C (x, y) can be represented by means of a reproducing kernel

J ∶ (X × Y) × (X × Y) → R ∶ ((x, y), (x̂, ŷ)) ↦ ⟨Ψ(x, y),Ψ(x̂, ŷ)⟩HΨ
, (5.14)

namely by considering the inner product

C (x, y) = ⟨C , J(⋅, (x, y))⟩HΨ
. (5.15)

5.2. BACKGROUND 63

The reproducing kernels corresponding to joint feature spaces like the one given by Equation
5.14 are often referred to as joint kernel functions.

Combining the above observations and following the same argumentation as in the represen-
ter theorem (Theorem 75), it is straightforward to derive2 that the compatibility function C ∗

corresponding to the the minimizer f∗ of Equation 5.13 admits a representation of the form

C ∗ =
m

∑
i=1
∫
Y
βi(y)J(⋅, (xi, y))dµ(y), (5.16)

where µ is a measure on Y. Typically, in the discrete case the counting measure and in the
continuous case the Lebesgue measure is used yielding

C ∗ =
m

∑
i=1
∑
y∈Y

βiyJ(⋅, (xi, y)) (5.17)

and
C ∗ =

m

∑
i=1
∫
Y
βi(y)J(⋅, (xi, y))dλ(y) (5.18)

respectively. To make a long story short, using the notion of joint feature spaces allows for
reusing most of the kernel theory introduced in Chapter 4 in a natural way. As a consequence,
joint feature spaces with an easily computable scalar product are particularly interesting.

5.2.4 Designing Joint Kernels

There are various ways of designing the joint kernel functions used for structured learning
algorithms. Similar to the kernels used for the real-valued problems, joint kernels can be either
defined as the inner product induced by the joint feature map Ψ ∶ X × Y → HΨ or directly by
specifying J((x, y), (x̂, ŷ)). It is important to note that prior knowledge about the task – such
as input-input, input-output and output-output correlations – can be included by designing the
joint kernel appropriately3.

One straightforward way of designing joint kernels is to make use of Proposition 21 of
Tsochantaridis et al. (2005b), which states that the inner product in a joint feature space HΨ
of the form Hφ ⊗Hψ can be written as

⟨Ψ(x, y),Ψ(x̂, ŷ)⟩HΨ
= ⟨φ(x), φ(x̂)⟩Hφ ⟨ψ(y), ψ(ŷ)⟩Hψ . (5.19)

Therefore joint kernel evaluations can be defined as the product of input kernel and output
kernel evaluations.

J((x, y), (x̂, ŷ)) ∶=Kinput(x, x̂)Koutput(y, ŷ). (5.20)

We already know several input kernels, therefore the final remaining issue is the definition of
suitable output kernels.

Weston et al. (2002) present an elegant way of transforming certain types of loss functions
into output kernels, namely by choosing the output kernel

Koutput(y, ŷ) ∶= ⟨ψ(y), ψ(ŷ)⟩Hψ (5.21)

2The interested reader is referred to Lafferty et al. (2004), who perform a similar derivation in order to proof
a variation of the Representer Theorem for Conditional Random Fields.

3Weston et al. (2007) show how to incorporate those correlations, when designing the joint kernel.

64 CHAPTER 5. STRUCTURED OUTPUT LEARNING

in a way that the equality

c(y, ŷ)2 != ∥ψ(y) − ψ(ŷ)∥2
Hψ

= ⟨ψ(y) − ψ(ŷ), ψ(y) − ψ(ŷ)⟩ (norm induced by inner product)
=Koutput(y, y) − 2Koutput(y, ŷ) +Koutput(ŷ, ŷ) (bilinearity of inner product)

(5.22)
holds. Table 5.1 summarizes some examples. The relationship given by Equation 5.22 can be
easily verified.

Type Loss function Kernel function
Classification 1 − Iy=ŷ(y, ŷ) 1

2Iy=ŷ(y, ŷ)
Regression ∥y − ŷ∥2 ⟨y, ŷ⟩
"Arbitrary" c(yi, yj) ∶=Dij

1
2 (∣Dij ∣2 −∑mp=1 cp∣Dip∣2 −∑mq=1 cq ∣Dqj ∣2 + −∑mp,q=1 cpcq ∣Dpq ∣2)

Table 5.1: Some output kernels derived from loss functions. Note that in the ”arbitrary” case
the coefficients must satisfy ∑i ci = 1.

5.3 Structured Support Vector Machine
When minimizing Equation 5.13 with an inappropriate error function, for example the zero-one
loss

c01(ŷ, y) ∶= Iy≠ŷ(ŷ, y), (5.23)

we face the same problem as in the real valued case, namely that in the linearly separable case
possibly infinitely many indistinguishable solutions to the minimization problem exist. There-
fore, generalizations of the maximum-margin approach used in the binary Support Vector Ma-
chine, see Section 2.4, are of great interest in order to derive a well-posed optimization framework
for the structured output case. In the following we will comprehend the generalization of the
maximum margin principle to the structured output case, where the output space Y is assumed
to be discrete, performed by Tsochantaridis et al. (2005b).

Let X be an arbitrary set, Y a discrete set, Ψ ∶ X × Y → HΨ a joint feature space mapping
and z = (x,y) a training set of size m. We consider compatibility functions parametrized by
w ∈ HΨ

Cw(x, y) ∶= ⟨w,Ψ(x, y)⟩HΨ
. (5.24)

5.3.1 Linearly Separable Case

For compatibility functions that separate the training data the nonlinear inequalities

∀i ∈ {1, . . . ,m} ∶ max
y∈Y/{yi}

Cw(xi, y) ≤ Cw(xi, yi), (5.25)

expressing that the compatibility score of xi and the correct label yi is the highest, are satisfied.
By using the definition of the maximum they are equivalent to the linear inequalities

∀i ∈ {1, . . . ,m} ∶ ∀y ∈ Y/{yi} ∶ Cw(xi, y) ≤ Cw(xi, yi), (5.26)

which can be rewritten to

∀i ∈ {1, . . . ,m} ∶ ∀y ∈ Y/{yi} ∶ ⟨w,Ψ(xi, yi) −Ψ(xi, y)⟩HΨ
≥ 0, (5.27)

5.3. STRUCTURED SUPPORT VECTOR MACHINE 65

by Definition 5.24 and the bilinearity of the inner product. In order to obtain a unique w,
satisfying Property 5.27, the one with the largest margin is selected. Tsochantaridis et al.
(2005b) generalizes definition of the margin introduced by Vapnik (1998) (Definition 38) to the
structured output case by considering the minimal difference between the correct score and the
closest runner up

γ(w) ∶= min
i∈{1,...,m},
y∈Y/{yi}

Cw(xi, yi) −Cw(xi, y)

= min
i∈{1,...,m},
y∈Y/{yi}

⟨w,Ψ(xi, yi) −Ψ(xi, y)⟩ .
(5.28)

Remark 77. (Generalization of the margin) It is straightforward to verify, that Expression
5.28 is a generalization of the expression for the margin in the binary case in Definition 38, by
considering the scoring function

Cw(x, y) ∶= y ⟨w,φ(x)⟩ . (5.29)

By substituting this scoring function into Expression 5.28 we get

γ(w) = min
i∈{1,...,m},
y∈Y/{yi}

C (xi, yi) −C (xi, y)

= min
i∈{1,...,m},
y∈Y/{yi}

yi ⟨w,φ(xi)⟩ − y ⟨w,φ(xi)⟩ (Definition 5.29)

= min
i∈{1,...,m},
y∈Y/{yi}

(yi − y) ⟨w,φ(xi)⟩ (bilinearity of the inner product).

(5.30)

The observation that in the linear separable case (yi − y) ⟨w,φ(xi)⟩ is equal to 2∣ ⟨w,φ(xi)⟩ ∣,
which is the distance between φ(xi) and the hyperplane multiplied by a constant, concludes the
verification.

Using Definition 5.28, maximizing the margin in the linear separable case results in the
optimization problem

max γ(w)
w.r.t. w ∈ {w ∈ HΨ ∶ ∥w∥HΨ = 1},
s.t. ∀y ∈ Y/{yi} ∶ ⟨w,Ψ(xi, yi) −Ψ(xi, y)⟩HΨ

≥ γ(w),
for i ∈ {1, . . . ,m}.

(5.31)

Note that without the normalization of w the maximization problem would not be well defined.
The Optimization Problem 5.31 can be rewritten into a convex quadratic programming

problem by considering the constraints

⟨w,Ψ(xi, yi) −Ψ(xi, y)⟩HΨ
≥ γ(w) ⇔

⟨ w

γ(w) ,Ψ(xi, yi) −Ψ(xi, y)⟩
HΨ

≥ 1⇔

⟨v,Ψ(xi, yi) −Ψ(xi, y)⟩HΨ
(v ∶= w

γ(w))

(5.32)

66 CHAPTER 5. STRUCTURED OUTPUT LEARNING

and noting that γ(w) is maximized when ∥v∥2
HΨ

is minimized, because of the relationship

∥v∥2
HΨ = ∥ w

γ(w)∥
2
HΨ

= 1
γ(w)2 ∥w∥2

HΨ (absolute homogeneity of the norm)

= 1
γ(w)2 (∥w∥HΨ = 1).

(5.33)

The resulting quadratic programming problem is

min ∥v∥2
HΨ

w.r.t. v ∈ HΨ,
s.t. ∀y ∈ Y/{yi} ∶ ⟨v,Ψ(xi, yi) −Ψ(xi, y)⟩HΨ

≥ 1,
for i ∈ {1, . . . ,m}.

(5.34)

Remark 78. (Continuous outputs) Weston et al. (2007) generalize the structured SVM to
continuous output spaces, by adjusting the constraints from Optimization Problem 5.34 to

∀i ∈ {1, . . . ,m} ∶ ∀y ∈ Y ∶ ∥yi − y∥ ≥ ε ∶ ⟨v,Ψ(xi, yi) −Ψ(xi, y)⟩HΨ
≥ ε

2

2
. (5.35)

5.3.2 Non-linearly Separable Case

When the training set z is not linearly separable slack variables can be introduced to account for
the errors analogously as it has been performed in binary SVM. There are several different ways
of using slack variables, for example one could either use one slack variable per linear constraint
or one slack variable per non-linear constraint. Tsochantaridis et al. (2005b) focus on the latter
approach. Adding a penalty term for the slacks to the objective and adjusting the constraints,
leads to the optimization problem

min ∥v∥2
HΨ

+ C
m ∑

m
i=1 ξi

w.r.t. v ∈ HΨ, ξ ∈ Rm,
s.t. ∀y ∈ Y/{yi} ∶ ⟨v,Ψ(xi, yi) −Ψ(xi, y)⟩HΨ

≥ 1 − ξi,
ξi ≥ 0, for i ∈ {1, . . . ,m},

(5.36)

where C controls the trade-off between margin maximization and training error minimization.

5.3.3 Arbitrary Loss Function

Despite the fact that in the linear separable case many loss functions, i.e. loss functions that
satisfy c(y, y) = 0, don’t lead to a well posed optimization problem, there is a second difficulty
that arises when minimizing Equation 5.13, namely that c(arg maxy∈Y Cw(xi, y), yi) is not con-
tinuous with respect to w. In the current setting f(x) ∶= arg maxy∈Y Cw(x, y) maps into the
discrete space Y, as a result c(arg maxy∈Y Cw(xi, y), yi) is a piecewise constant function with
respect to w.

Tsochantaridis et al. (2005b) present two intuitive approaches to augment the maximum
margin learning framework, described by Optimization Problem 5.36, with arbitrary loss func-
tions. One involves rescaling the slack variables and the other rescaling the margin. The sum
over the optimal values for the slack variables of the corresponding optimization problems, pro-
vide upper-bounds for the empirical risk of the loss function, see Proposition 1 and Proposition
2 of Tsochantaridis et al. (2005b). We briefly outline the slack rescaling approach.

5.3. STRUCTURED SUPPORT VECTOR MACHINE 67

Slack rescaling

The underlying idea of the slack rescaling approach is that the penalty for the violation of a
margin constraint f(xi) ≠ yi should scale with the corresponding loss c(f(xi), yi). The am-
plification of the penalty ξi by the factor c(f(xi), yi) is accomplished by scaling ξi in margin
constraints with the inverse loss, which yields

min ∥v∥2
HΨ

+ C
m ∑

m
i=1 ξi

w.r.t. v ∈ HΨ, ξ ∈ Rm,
s.t. ∀y ∈ Y/{yi} ∶ ⟨v,Ψ(xi, yi) −Ψ(xi, y)⟩HΨ

≥ 1 − ξi
c(y,yi)

,

ξi ≥ 0, for i ∈ {1, . . . ,m}.

(5.37)

By considering the dual problem of Optimization Problem 5.37 and thereby noting that the
optimal slacks are given by

ξ∗i = max{0,max
y≠yi

{c(y, yi)(1 − ⟨v,Ψ(xi, yi) −Ψ(xi, y)⟩HΨ
)}} (5.38)

it is straightforward to show that the inequality

1
m

m

∑
i=1
c(f(xi), yi) ≤

1
m

m

∑
i=1
ξ∗i (5.39)

holds, namely by showing that every summand on the left is bounded by the one on the right.
The case, where f(xi) = yi, meaning that c(f(xi), yi) = 0, is trivial, since ξi ≥ 0 per definition.
When f(xi) ≠ yi holds on the other hand, then ⟨v,Ψ(xi, yi) −Ψ(xi, f(xi))⟩ ≤ 0 and since f(xi)
is defined as arg maxy∈Y ⟨v,Ψ(xi, y)⟩HΨ

the equality

ξ∗i = c(f(xi), yi)(1 − ⟨v,Ψ(xi, yi) −Ψ(xi, f(xi))⟩HΨ
´¹¹¸¹¹¹¶

≤0

) (5.40)

holds. Thus ξ∗i
c(f(xi),yi)

≥ 1, which is equivalent to ξ∗i ≥ c(f(xi), yi). Therefore, using the slack
rescaling approach in order to incorporate arbitrary loss functions in the maximum margin
framework, leads to the thought of exchanging the badly-behaving loss function with a well-
behaving one.

Margin rescaling

Alternatively, the margin can be rescaled instead of the slack variables, resulting in

min ∥v∥2
HΨ

+ C
m ∑

m
i=1 ξi

w.r.t. v ∈ HΨ, ξ ∈ Rm,
s.t. ∀y ∈ Y/{yi} ∶ ⟨v,Ψ(xi, yi) −Ψ(xi, y)⟩HΨ

≥ c(y, yi) − ξi,
ξi ≥ 0, for i ∈ {1, . . . ,m}.

(5.41)

The average over the optimal slacks of Optimization Problem 5.41 provides an upper bound to
the empirical risk as well, see Tsochantaridis et al. (2005b) Proposition 2. Note that instead of
the constraints

∀y ∈ Y/{yi} ∶ ⟨v,Ψ(xi, yi) −Ψ(xi, y)⟩HΨ
≥ c(y, yi) − ξi (5.42)

the constraints
∀y ∈ Y ∶ ⟨v,Ψ(xi, yi) −Ψ(xi, y)⟩HΨ

≥ c(y, yi) − ξi (5.43)
can be considered, since ⟨v,Ψ(xi, yi) −Ψ(xi, yi)⟩HΨ

is equal to zero and thereby greater or equal
−ξi.

68 CHAPTER 5. STRUCTURED OUTPUT LEARNING

5.3.4 Simplifications

Optimization Problem 5.34 is hard to solve, not least because of a training set of size m and an
output space of size ∣Y∣, the number of constraints is m(∣Y∣ − 1). In order to solve the problem
efficiently, typically a variety of assumptions are made. Among others, the strongest assumption
that is made for example by Tsochantaridis et al. (2005b) to solve the problem efficiently, is the
existence of an algorithm that solves the pre-image problem in polynomial time. Corollary 1 of
Proposition 1 of Gärtner and Vembu (2009) shows that for a large class of output set - hypothesis
space pairs (Y,H) this assumption is violated.

This result suggests to put effort into simplifying the problem. For example Gärtner and
Vembu (2009) considered hypotheses that are linear in a tensor product space together with out-
put sets for which ∣Y∣,∑y∈Y ψ(y) and ∑y∈Y ψ(y)ψ(y)′ can be computed efficiently. Alternatively,
similar optimization problems, that carry the spirit of maximum margin learning but are more
efficient to solve, can be derived by relaxing the constraints of the structured SVM optimization
problems.

Example 79. (Relaxation of the Constraints)
Let Y = {−1,+1}n, Ψ(xi, y) be defined as φ(xi) ⊗ y and c(y, ŷ) be the Hamming distance

c(y, ŷ) =
n

∑
i=1

I(y≠ŷ)(y, ŷ). (5.44)

The Structured SVM constraints of Optimization Problem 5.41 can be written as

⟨v,Ψ(xi, yi) −Ψ(xi, y)⟩HΨ
≥ c(yi, y) − ξi,∀i ∈ {1, . . . ,m}, y ∈ Y. (5.45)

If the constraints in Optimization Problem 5.45 are satisfied, the constraints

⟨v,Ψ(xi, yi) −Ψ(xi, y)⟩HΨ
≥ c(yi,y)

Ci
− ξi,∀i ∈ {1, . . . ,m}, y ∈ Y, (5.46)

where Ci is a positive constant will be satisfied as well. In the following we will consider the
average over all constraints, therefore choosing

Ci ∶= ∑
y∈Y

c(yi, y) =
n

2
(5.47)

will lead to a simpler expression. When averaging over the constraints with respect to the domain
Y the first term becomes

∑y∈Y ⟨v,Ψ(xi, yi)⟩HΨ
/∣Y∣ = ⟨v,Ψ(xi, yi)⟩HΨ

, (5.48)

the second term vanishes

∑
y∈Y

⟨v,Ψ(xi, y)⟩HΨ
/∣Y∣ = ∑

y∈Y

⟨v, y ⊗ φ(xi)⟩HΨ
/∣Y∣ (assumption)

= ⟨v, (1/∣Y∣) ∑
y∈Y

y ⊗ φ(xi)⟩
HΨ

(bilinearity of inner product)

= ⟨v, (∑
y∈Y

y/∣Y∣) ⊗ φ(xi)⟩
HΨ

(bilinearity of tensor product)

= ⟨v,0⊗ φ(xi)⟩HΨ
(symmetry of Y)

= 0

(5.49)

because ∑y∈Y y = 0, for the Hamming distance we have

∑y∈Y c(yi,y)
n/2 /∣Y∣ = 1 (5.50)

5.4. MAXIMUM MARGIN REGRESSION 69

and for the slack we get
∑y∈Y ξi/∣Y∣ = ξi. (5.51)

Putting together these terms will leads to the same constraints as in the optimization problem
of the Maximum Margin Regression, introduced by Szedmak et al. (2005), where the constraints
are given by

⟨yi, vφ(xi)⟩HΨ
≥ 1 − ξi,∀i ∈ {1, . . . ,m}, (5.52)

because of the equality
⟨v, yi ⊗ φ(xi)⟩HΨ

= ⟨yi, vφ(xi)⟩HΨ
. (5.53)

It is worth pointing out, that Szedmak et al. (2005) derived the same optimization problem by
generalizing the binary SVM in a geometrical sense.

5.4 Maximum Margin Regression
The maximum margin regression (MMR), introduced by Szedmak et al. (2005), can be seen as a
geometrical generalization of the two-class support vector machine to structured output spaces.
Astikainen et al. (2008) use the MMR method in order to predict enzyme functions and Xiong
et al. (2015) use it for image annotation.

5.4.1 Problem Formulation

In the binary SVM the objective is to find the hyperplane with the maximum margin. This
hyperplane is parametrized by a linear form in the feature space. In order to consider structured
outputs the outputs can be mapped into a label space. Both the feature space Hφ and the label
space Hψ are Hilbert spaces. As a consequence instead of a linear form

hw ∶ Hφ → R ∶ φ(x) ↦ w′φ(x) (5.54)

a linear map hW from the feature space into the label space

hW ∶ Hφ →Hψ ∶ φ(x) ↦Wφ(x) (5.55)

is required. After introducing the generalization of our linear function hw in the form of a
linear mapping hW the objective and the remaining constraints of the binary SVM optimization
problem can be rewritten correspondingly. In the objective an operator norm has to be used
in place of the vector norm and the constraints can be generalized using the properties of the
output Hilbert space Hψ. Figure 5.1 summarizes these changes. Omitting the bias term, the
resulting optimization problem is

min ∥W ∥2
Frobenius +C∑mi=1 ξi

w.r.t. W ∶ Hφ →Hψ, ξ ∈ Rm,
s.t. ⟨ψ(yi),Wφ(xi)⟩Hψ ≥ 1 − ξi,

ξi ≥ 0, for i ∈ {1, . . . ,m}.

(5.56)

In order to predict, the pre-image problem

y∗ = arg max
y∈Y

⟨ψ(y),Wφ(x)⟩Hψ (5.57)

has to be solved. Because of the relationship between the inner product of two vectors u and v
and the angle between them

cos(∢(u, v)) = ⟨u, v⟩
∥u∥∥v∥ , (5.58)

70 CHAPTER 5. STRUCTURED OUTPUT LEARNING

solving the pre-image problem corresponds to finding the y of which the label vector ψ(y) is
maximally aligned with the prediction Wφ(x), i.e. ∢(ψ(y),Wφ(x)) is equal to zero.

Binary class learning Vector label learning
Support Vector Machine (SVM) Maximum Margin Regression (MMR)

min 1
2 W TW
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶

∥W ∥2
2

+C1T ξ 1
2 tr(W TW)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∥W ∥2

Frobenius

+C1T ξ

w.r.t. w ∶ Hφ → R , normal vec. W ∶ Hφ →Hψ , linear operator
b ∈ R , bias b ∈ Hψ , translation(bias)
ξ ∈ Rm, error vector ξ ∈ Rm, error vector

s.t. yi(wTφ(xi) + b) ≥ 1 − ξi ⟨ψ(yi),Wφ(xi) + b⟩Hψ ≥ 1 − ξi
ξ ≥ 0, i = {1, . . . ,m} ξ ≥ 0, i = {1, . . . ,m}

Figure 5.1: The changes in the optimization problem from SVM to MMR.

5.4.2 Kernel Version

Proposition 80. (MMR kernel version) The dual problem of Optimization Problem 5.56 is
given by

min 1
2 ∑

n
i=1∑nj=1 αiαjkX (xi, xj)kY(yi, yj) − 1′α

w.r.t. α
s.t. 0 ≤ αi ≤ C, i ∈ {1, . . . , n} ,

(5.59)

where kX (xi, xj) ∶= ⟨φ(xi), φ(xj)⟩ is an input kernel and kY(yi, yj) ∶= ⟨ψ(yi), ψ(yj)⟩ is an output
kernel.

Proof. In order to obtain the kernel version the Lagrange dual function needs to be considered.
The Lagrange dual function g is defined as the infimum of the Lagrangian with respect to the
parameters of the objective function and gives us a lower bound for the objective function f.
Let’s refer to the objective function as f

f(W,ξ) ∶= 1
2
∥W ∥2 +C

n

∑
i=1
ξi. (5.60)

The corresponding Lagrangian function can be obtained by converting the greater-than-equal
constraints into lower-than-equal constraints, by multiplying with minus one and using the
definition of the Lagrangian function (Definition 2.69), resulting in

L(W,ξ,α, β) ∶= f(W,ξ) −
n

∑
i=1
αi ⟨ψ(yi),Wφ(xi)⟩ +

n

∑
i=1
αi −

n

∑
i=1
αiξi −

n

∑
i=1
βiξi. (5.61)

The Lagrange dual function
g(α,β) ∶= inf

W,ξ
L(W,ξ,α, β) (5.62)

5.4. MAXIMUM MARGIN REGRESSION 71

provides a lower bound on the objective function g(α,β) ≤ f(W,ξ). The infimum can be found
by setting the derivatives with respect to W

∂L

∂W

!= 0 (5.63)

and ξ
∂L

∂ξ

!= 0 (5.64)

to zero.
When using the Frobenius norm ∥W ∥2 = tr(W ′W), the derivative with respect toW becomes

∂L

∂W
=W −

n

∑
i=1
αiψ(yi)φ(xi)′, (5.65)

because of the identities
∂tr(W ′W)

∂W
= 2W (5.66)

and
∂ ⟨ψ(yi),Wφ(xi)⟩

∂W
= ∂ψ(yi)

′Wφ(xi)
∂W

= ψ(yi)φ(xi)′. (5.67)

Therefore, W can be expressed in terms of α

W =
n

∑
i=1
αiψ(yi)φ(xi)′. (5.68)

The derivative with respect to ξ is

∂L

∂ξ
= C1 − α − β. (5.69)

By rearranging the terms the following expression is obtained for β

β = C1 − α. (5.70)
The Lagrange dual function now can be written explicitly by substituting Equation 5.68 and
Equation 5.70 into Equation 5.61. Without further simplifications the following expression is
obtained

g(α,β) =
1
2
tr((

n

∑
i=1
αiψ(yi)φ(xi)′)

′

(
n

∑
i=1
αiψ(yi)φ(xi)′))

+C1′ξ −
n

∑
i

αi ⟨ψ(yi),(
n

∑
i=1
αiψ(yi)φ(xi)′)φ(xi)⟩

+ 1′α − α′ξ −C1′ξ + α′ξ,

(5.71)

where the terms containing ξ cancel. The dual function can be further simplified by unfolding
the matrix multiplications inside the trace and inside the inner product. Let’s consider the part
with the trace first. Assuming that the dimensionality of the feature space Hφ is d and the
dimensionality of the output space Hψ is k, the shape of W is k × d. Therefore, the trace of
W ′W is

tr(W ′W) =
d

∑
v=1

(W−v)′W−v, (5.72)

72 CHAPTER 5. STRUCTURED OUTPUT LEARNING

where W−v denotes the v-th column of W , which is equal to

W−v =
n

∑
i=1
αi

⎛
⎜
⎝

ψ(yi)1φ(xi)v
⋮

ψ(yi)kφ(xi)v

⎞
⎟
⎠
. (5.73)

Substituting Equation 5.73 into Equation 5.72 and performing the vector multiplication we get

tr(W ′W) =
d

∑
v

k

∑
u

⎛
⎝
n

∑
i=1
αiψ(yi)uφ(xi)v ⋅

n

∑
j

αjψ(yj)uφ(xj)v
⎞
⎠
. (5.74)

By making use of the commutativity of the sum a+ b = b+a and the distributive law a ⋅ b+a ⋅ c =
a ⋅ (b + c) the following expression can be obtained

tr(W ′W) =
n

∑
i=1

n

∑
j

αiαj (
k

∑
u

ψ(yi)uψ(yj)u ⋅
d

∑
v

φ(xi)vφ(xj)v)

=
n

∑
i=1

n

∑
j

αiαj ⟨φ(xi), φ(xj)⟩ ⟨ψ(yi), ψ(yj)⟩,
(5.75)

where the the inputs and the outputs only enter via inner-products. The simplification of the
remaining part of the formula is similar

n

∑
i=1
αi ⟨ψ(yi),(

n

∑
i=1
αiψ(yi)φ(xi)′)φ(xi)⟩ (inner-product and matrix-multiplication)

=
n

∑
i=1
αi

⎛
⎝
k

∑
u

ψ(yi)u ⋅
d

∑
v

φ(xi)v ⋅
n

∑
j

αjψ(yj)uφ(xj)v
⎞
⎠

(commutativity and distributivity)

=
n

∑
i=1

n

∑
j

αiαj (
k

∑
u

ψ(yi)uψ(yj)u ⋅
d

∑
v

φ(xi)vφ(xj)v) (definition of inner-product)

=
n

∑
i=1

n

∑
j

αiαj ⟨φ(xi), φ(xj)⟩ ⟨ψ(yi), ψ(yj)⟩.

(5.76)
Putting Equation 5.75 and Equation 5.76 back into Equation 5.71 results in

g(α) = −1
2

n

∑
i=1

n

∑
j=1

αiαj ⟨φ(xi), φ(xj)⟩ ⟨ψ(yi), ψ(yj)⟩ + 1′α, (5.77)

where the parameter β does not occur any longer. Since the dual is a lower bound on the objective
function f , it has to be maximized in order to find the best α. Maximizing g is equivalent to
minimizing (−1)g(α), resulting in the Optimization Problem 5.59, where the box-constraints for
αi come from the Karush-Kuhn-Tucker conditions (Boyd and Vandenberghe, 2004) and from
Equation 5.70, since αi ≥ 0, βi ≥ 0 and αi = C − βi imply that αi ≤ C for i ∈ {1, . . . , n}.

Proposition 81. (MMR predictor) The pre-image problem of the MMR takes the form

y∗(x) = arg max
y∈Y

n

∑
i=1
αikX (xi, x)kY(yi, y) (5.78)

5.4. MAXIMUM MARGIN REGRESSION 73

Proof. Substituting the parametrization of the learned mappings, given by Equation 5.68, into
the Pre-image Problem 5.57 and using the bilinearity of the inner product yields

y∗(x) = arg max
y∈Y

⟨ψ(y),Wφ(x)⟩ (Pre-image Problem 5.57)

= arg max
y∈Y

⟨ψ(y),
n

∑
i=1
αiψ(yi)φ(xi)′φ(x)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=⟨φ(xi),φ(x)⟩

⟩ (Equation 5.68)

= arg max
y∈Y

n

∑
i=1
αi ⟨φ(xi), φ(x)⟩ ⟨ψ(y), ψ(yi)⟩ (bilinearity i.p.).

(5.79)

The application of the kernel trick on the last line of Derivation 5.79 leads to Equation 5.78,
which closes the proof.

74 CHAPTER 5. STRUCTURED OUTPUT LEARNING

Appendix

5.A The Tensor Product

Without going into too much math, we will introduce the tensor product as a powerful tool,
that enables us to work with multilinear functions as if they were linear functions.

Definition 82. (Multilinear function) Let n be in N and V1, . . . ,Vn,W be K-vector spaces. A
function f ∶ V1 × ⋅ ⋅ ⋅ × Vn →W is called multilinear, if the functions

fi ∶ Vi →W ∶ vi ↦ f(v1, . . . , vi, . . . , vn) (5.80)

are linear for all i ∈ {1, . . . , n} and all fixed (n − 1)-tuples

(v1, . . . , vi−1, vi+1, . . . , vn) ∈ V1 × ⋅ ⋅ ⋅ × Vi−1 × Vi+1 × ⋅ ⋅ ⋅ × Vn. (5.81)

If n is equal to two we will call a multilinear function bilinear.

For the sake of simplicity we consider bilinear functions for now.

Definition 83. (Tensor product) Let V1 and V2 be K-vector spaces. The tensor product V1⊗V2
of V1 and V2 is a K-vector space, for which a bilinear mapping ⊗ ∶ V1 ×V2 → V1 ⊗V2 exists, that
fulfills the universal property:

For every bilinear mapping b from V1 × V2 to a K-vector space W

b ∶ V1 × V2 →W, (5.82)

an uniquely determined linear mapping b̃ from V1 ⊗ V2 to W exists

b̃ ∶ V1 ⊗ V2 →W, (5.83)

such that the equality
b̃(v1 ⊗ v2) = b(v1, v2), (5.84)

where v1 ⊗ v2 ∶= ⊗(v,w), holds for all v1 ∈ V1 and v2 ∈ V2.

The tensor product space and the corresponding bilinear mapping can be constructed in
various ways4. The resulting vector space is uniquely determined up to isomorphisms. Addi-
tionally, the definition and construction for the tensor product of more than two vector spaces
can be performed analogously.

As illustrated in the following example, in the tensor product space a for every bilinear form
a linear form can be found.

4For the construction of the tensor product we refer the reader to Halmos (1974).

75

76 CHAPTER 5. STRUCTURED OUTPUT LEARNING

Example 84. (The Kronecker product) For finite dimensional vector spaces Rm and Rn, a
matrix A ∈ Rm×n exists for every bilinear form b ∶ Rm ×Rn → R with

b(x, y) = x′Ay, for all x ∈ Rm and y ∈ Rn. (5.85)

Let m be equal to three, n be equal to two and b the bilinear form defined by the matrix B ∈ R3×2

b(
⎛
⎜
⎝

v1
v2
v3

⎞
⎟
⎠
,(w1
w2

)) = (v1 v2 v3)
⎛
⎜
⎝

B11 B12
B21 B22
B31 B32

⎞
⎟
⎠
(w1
w2

) , (5.86)

for v ∈ R3 and w ∈ R2. By the definition of the matrix multiplication b(v,w) can be written as a
summation

b(v,w) =
3
∑
i=1
vi

2
∑
j=1

Bijwj . (5.87)

Using the distributivity of multiplication and addition and the commutativity of the multiplication
in R, b(v,w) can be written as

b(v,w) =
3
∑
i=1

2
∑
j=1

Bijviwj , (5.88)

which already indicates, that at least one vector space that is isomorphic to the tensor product
space of R3 and R2 exists, namely a subspace of R3×2. The bilinear function ⊗, that maps R3×R2

to that space, is called Kronecker product and defined as

⊗ ∶ Rm×n ×Rp×r ∶ (A,B) ↦ Aij ⋅B,
i ∈ {1 . . .m} , j ∈ {1 . . . n} .

(5.89)

The Kronecker product of v ∈ R3 and w ∈ R2 is

v ⊗w =
⎛
⎜
⎝

v1w1 v1w2
v2w1 v2w2
v3w1 v3w2

⎞
⎟
⎠
, (5.90)

which is an element of R3×2. As a consequence, the linear function b̃ corresponding to b can
easily be specified

b̃ ∶ R3 ⊗R2 → R ∶ v ⊗w ↦ ⟨B,v ⊗w⟩Frobenius , (5.91)

where v ∈ R3, w ∈ R2 and ⟨⋅, ⋅⟩Frobenius is the Frobenius inner product.

Chapter 6

Structured Object Imputation

6.1 Introduction

Imputation terms the process of filling up missing data in a data set, for example in a data
matrix of a statistical survey. In statistics imputation has been an important topic for decades.
One of the reasons for the importance of imputation in statistics is that many tools of statistical
data analysis, for example statistical tests, factor analysis, regression analysis and all the other
machine learning methods that we have seen so far, require the data set to be complete to a
certain extend.

According to Enders (2010), traditional imputation methods range from simple approaches
like Listwise Deletion, where instances with missing attributes are omitted, Arithmetic Mean
Imputation, where the mean of the corresponding attribute is imputed, Hot-Deck Imputation,
where the latest observed value of the corresponding attribute is imputed, to more sophisticated
approaches like Regression Imputation, where for every configuration of missing and observed
attributes, so-called missing data patterns, a regression function is computed, and Stochas-
tic Regression Imputation, which is an extension of Regression Imputation. State-of-the-art
approaches go one step further and are mostly based on Maximum Likelihood and Bayesian
formulations.

Machine learning methods for the imputation of discrete values based on various classifiers
exist as well, for instance Rahman and Davis (2013) compare a classification based imputation
approach using different classifiers with Arithmetic Mean Imputation. More recently Kidambi
et al. (2013) formulated the Missing Value Imputation problem as a Structured Output Problem.
The rows of a discrete valued data matrix with missing entries are considered as structured
objects, which are composed of inter-related variables, namely the missing and observed entries of
the row. In order to impute the missing values a procedure is proposed, that starting from a Mode
Imputation iteratively improves the imputed values by re-predicting them using a generalization
of a multi-class SVM.

The nature of the missing value problem complicates the usage of standard machine learning
methods like regression, classification and structured prediction, since depending on the amount
of variables a large number of missing data patterns has to be addressed and the fraction and
distribution of the missing values together with the amount of interrelation between them have
to be considered. Additionally, the approaches by Kidambi et al. (2013) and Rahman and
Davis (2013) both suffer from their iterative nature, because the iterations are computationally
expensive, i.e. every iteration involves a training and a prediction step.

For missing data problems, in which the data table obeys certain rules, collaborative filtering

77

78 CHAPTER 6. STRUCTURED OBJECT IMPUTATION

techniques1 are widely applied. An example might be the recommender system problems, where
the data table describes user behavior in terms of user-item interactions. Even though in general
the data table for a collaborative filtering problem does not necessarily have to connect users
to items, but objects to other objects instead, we stick to the user-item terminology for better
readability. The base assumption underlying collaborative filtering techniques is that users
sharing their opinion on some items are likely to share their opinion on other items as well,
which is basically a reformulation of the base assumption of machine learning, namely that
similar inputs shall lead to similar outputs. Therefore, collaborative filtering approaches can be
broken down to a similarity measure that allows to identify users with a similar opinion and a
mechanism to combine the opinions found that way.

We would like to present an efficient alternative, the work of Szedmak et al. (2014a), which
handles the mentioned difficulties in an elegant way while preserving a high extend of generality.
The different missing data patterns occurring can be handled simultaneously by reinterpreting
the data table appropriately. Large scale datasets can be handled efficiently by distributing
the workload among several learners. Additionally, the missing entries of the table may be
structured objects.

6.2 Background

6.2.1 Problem Statement

Data table example
x11 ∅ x13 ∅
x21 ∅ x23 x24
x31 ∅ ∅ x34
⋮ ⋮ ⋮
∅ xm2 xm3 xm4.

∅missing items

Figure 6.1: The missing value problem.

At the end of the day all missing value problems can be broken down to the same task:
Given a partially observed table, like the one in Figure 6.1, fill in the missing values.

The differences between collaborative filtering problems and statistical imputation problems
origin from the procedure underlying the generation of the table. In the collaborative filtering
problem the rows of the table correspond to users, the columns to items and the entries capture
a relation between users and items, and in many statistical imputation problems the rows of the
table correspond to instances (e.g. participants of a survey), the columns to experiments carried
out on the instances (e.g. different questions of that survey) and the entries contain the results
of the experiments carried out on an instance (e.g. the answer a user gave to a question). When
considering the missing value problem as an extension of the supervised learning problem, in
which no explicit distinction between input and output variables is made and the missing values
can occur anywhere, the rows can be interpreted as instances, the columns as different object
classes (e.g. image, textual description, class label) and the entries as the descriptions of the
instances in terms of the different object classes.

1For more detailed information we refer the interested reader to Su and Khoshgoftaar (2009).

6.2. BACKGROUND 79

6.2.2 Intuitive Approach

X (1) X (2) X (3) X (4)

1 x1
1 ∅ x3

1 ∅
2 x1

2 ∅ x3
2 x4

2
3 x1

3 ∅ ∅ x4
3

⋮ ⋮ ⋮ ⋮ ⋮
m ∅ x2

m x3
m x4

m

⇒

f(1,3)→(2) ∶ X (1) × X (3) → X (2)

f(1,3)→(4) ∶ X (1) × X (3) → X (4)

f(1,4)→(2) ∶ X (1) × X (4) → X (2)

f(1,4)→(3) ∶ X (1) × X (4) → X (3)

⋮
f(2,3,4)→(1) ∶ X (2) × X (3) × X (4) → X (1)

Figure 6.2: The missing value problem can be transformed into multiple supervised learning
problems by learning one function per missing data pattern.

Judging from Figure 6.1 a good idea, especially when interpreting the missing value problem
as a generalization of the supervised learning problem, might be to decompose the problem of
predicting the missing values into several different supervised learning tasks. This can either
be achieved by learning one function for every combination of observed object classes available,
like illustrated in Figure 6.2, or by learning one function for every pair of object classes. Unfor-
tunately, this simple approach suffers from several issues: If, for instance, the number of object
classes is large, a large number of functions will have to be learned. Depending on the fraction
of missing elements, the training data available for each individual function can shrink dramati-
cally with the number of functions that have to be learned. Therefore, probably a fundamentally
different approach might be necessary to treat the problem appropriately.

6.2.3 Relational Learning Perspective

A/B b1 b2 b3 b4
a1 xa1b1 ∅ xa1b3 ∅
a2 xa2b1 ∅ xa2b3 xa2b4

a3 xa3b1 ∅ ∅ xa3b4

⋮ ⋮ ⋮ ⋮ ⋮
am ∅ xamb2 xamb3 xamb4

⇒

A B F (a, b)
a1 b1 xa1b1

a1 b3 xa1b3

a2 b1 xa2b1

a2 b3 xa2b3

a2 b4 xa3b4

⋮ ⋮ ⋮
am b2 xamb2
am b3 xamb3
am b4 xamb4
a1 b2 ∅
⋮ ⋮ ⋮
am b1 ∅

Figure 6.3: Reinterpretation of the table. A table can be interpreted as the observation of a
relation between elements of two sets.

Note that a table can be always interpreted as the observation of a function F defined on
the Cartesian product of two sets A and B, representing a relation between elements of the set
A and elements of the set B

F ∶ A × B → X , (6.1)

as done in Figure 6.3.

80 CHAPTER 6. STRUCTURED OBJECT IMPUTATION

By reinterpreting the data table that way, the missing value problem can be formulated as
a supervised learning problem. Let D ⊂ A × B denote the pairs (a, b) for which xab is observed,
i.e.

D ∶= {(a, b) ∈ A × B ∶ xab ∈ X and xab ≠ ∅}, (6.2)

where we denote missing entries in the table by ∅. Accordingly, the training set can be defined
as

{((a, b), xab) ∈ (A × B) × X ∶ (a, b) ∈ D} (6.3)

and the test set as

{((a, b), ∅) ∈ (A × B) × (X ∪ { ∅}) ∶ (a, b) ∈ (A × B)/D}. (6.4)

Depending on the nature of X any suitable learning algorithm, i.e. a learning algorithm that
can learn a function between the sets A×B and X , can be chosen. For example in recommender
systems the elements of X frequently is a subset of the natural numbers representing ratings
and the objective of the learning task is to learn the "user-rates-item" relation, but in general
the elements of X can also be binary, categorical, real valued, vector valued or structured,
representing a relation indicating whether there is a connection, a connection of a certain type,
corresponding to a probability measure, a vector valued measure or to something even fancier,
respectively. In the following we will consider a structured learning method to learn the relations,
since it can capture the simpler cases as well.

Learning a n-ary Relation

Using the structured learning framework, learning a X -valued n-ary relation between the sets
A1, . . . ,An

F ∶ A1 ×⋯ ×An → X , (6.5)

can be performed by finding a compatibility function in a joint representation space HΨ

Cw ∶ A1 ×⋯ ×An × X → R ∶ (a1, . . . , an, x) ↦ ⟨w,Ψ(a1, . . . , an, x)⟩ . (6.6)

Consequently, the evaluation of the learned relation becomes

F (a1, . . . , an) ≈ arg max
x∈X

Cw(a1, . . . , an, x). (6.7)

6.2.4 Feature Representation

A feature representation in the spirit of collaborative filtering methods, where objects are de-
scribed purely by their associated entries of the table, typically has the form

φ
(relational)
A

∶ A → H
φ
(relational)
A

∶ a↦ φ̃ ((xab){(a,b)∶b∈B}) . (6.8)

Note that φ̃ ∶ ∏b∈BX ↦ Hφ(relational)A
is a mapping from a tuple, in this case representing a row, to

a Hilbert space. In addition, features of the objects themselves, so-called contend-based features

φ
(content−based)
A

∶ A → H
φ
(content−based)
A

, (6.9)

can be considered. Figure 6.4 highlights the difference between content-based features, which
can be thought of as intrinsic properties of the objects, and relational features, which can be
thought of as interactions between object pairs.

6.3. RELATIONAL LEARNING USING MMR 81

ag
e,
ge
nd
er
,.
. .

(1
5,m

ale
,. .

.)
(3
2,f
em

ale
,. .

.)

(4
5,f
em

ale
,. .

.)
(2
5,m

ale
,. .

.)

genre,subgenre,. . . A/B b1 b2 . . . bn−1 bn
(sports, extreme, . . .) a1 xa1b1 ∅ . . . xa1bn−1 ∅
(action, comedy, . . .) a2 xa2b1 ∅ . . . xa2bn−1 xa2bn

(action, thriller, . . .) a3 xa3b1 ∅ . . . ∅ xa3bn

⋮ ⋮ ⋮ ⋮ ⋮
(crime, drama, . . .) am ∅ xamb2 . . . xambn−1 xambn

Figure 6.4: Content based and relational features illustrated in the example of a movie recom-
mendation system. The rows correspond to movies and the columns to users. Every user is
characterized by content based features like age or gender and by relational features like the set
of ratings made by the user. Movies are characterized analogously, for every movie there are
content based features like the genre or subgenre of the movie and relational features like the
set of ratings obtained by the movie.

Both feature representations can be combined, in the collaborative filtering literature meth-
ods using such a feature representation are referred to as hybrid methods. One way to combine
the feature representation is to use the tensor product

φ
(hybrid)
A

∶ A → H
φ
(content−based)
A

⊗H
φ
(relational)
A

. (6.10)

A feature representation for the objects indexing the columns can be defined analogously. Lastly,
a feature space mapping

ψ ∶ X → Hψ (6.11)

for the entries themselves is necessary in the general case.
After specifying the feature representations the learning procedure needs to find a bilinear

mapping, or, using the tensor product representation, a linear mapping from the feature repre-
sentation of objects indexing the rows and the objects indexing the columns to the representation
of the relation.

6.3 Relational Learning Using MMR

6.3.1 Problem Formulation

Let’s assume that suitable Hilbert space mappings for the elements of the sets A, B and X
are given by φA, φB, and ψ. Recall that using the MMR formalism learning the compatibility
function

Cw ∶ A × B × X → R ∶ (a, b, x) ↦ ⟨w,φA(a) ⊗ φB(b) ⊗ ψ(x)⟩ (6.12)

is performed by finding a linear mapping between the two spaces HφA ⊗ HφB and Hψ. This
linear mapping can be seen as linear approximation of the X -valued relation

F ∶ A × B → X , (6.13)

82 CHAPTER 6. STRUCTURED OBJECT IMPUTATION

by writing the multilinear approximation of the relation

F̃ ∶ HφA ×HφB →Hψ, (6.14)

as the corresponding linear function in the tensor product space

˜̃F ∶ HφA ⊗HφB →Hψ ∶ φA(a) ⊗ φB(b) ↦W (φA(a) ⊗ φB(b)). (6.15)

Remark 85. (Learning n-ary relations) Practically the same learning scheme can be applied
when learning a X -valued n-ary relation between the sets A1, . . . ,An

F ∶ A1 ×⋯ ×An → X . (6.16)

Given that φA1 , . . . , φAn are the corresponding feature space mappings, the multilinear approxi-
mation of the relation becomes

F̃ ∶ HφA1
×⋯ ×HφAn →Hψ, (6.17)

for which a linear mapping from the tensor product HφA1
⊗⋯⊗HφAn to Hψ

˜̃F ∶ HφA1
⊗⋯⊗HφAn →Hψ ∶ φA1(a1) ⊗⋯⊗ φAn(an) ↦W (φA1(a1) ⊗⋯⊗ φAn(an)) (6.18)

exists.

Therefore, after a proper problem formulation the MMR is used to find the linear mapping
˜̃F . For binary relations the resulting optimization problem is

min ∥W ∥2
Frobenius +C∑Oi=1 ξi

w.r.t. W ∶ HφA ⊗HφB →Hψ, ξ ∈ RO,
s.t. ⟨ψ(xaibi),W (φA(ai) ⊗ φB(bi))⟩Hψ ≥ 1 − ξi,

ξi ≥ 0, for i ∈ {1, . . . ,O},

(6.19)

where the set {xa1b1 , . . . , xaObO} denotes all the observed entries of the table.

6.3.2 Kernel Version

In the following let kA(ai, aj) ∶= ⟨φA(ai), φA(aj)⟩, kB(bi, bj) ∶= ⟨φB(bi), φB(bj)⟩ and kX (xi, xj) ∶=
⟨ψ(xi), ψ(xj)⟩ denote the kernels corresponding to the representation spaces.

Proposition 86. (Relational-MMR kernel version) The dual problem of Optimization Problem
6.19 is given by

min 1
2 ∑

O
i=1∑Oj=1 αiαjkA(ai, aj)kB(bi, bj)kX (xi, xj) − 1′α

w.r.t. α
s.t. 0 ≤ αi ≤ C, i ∈ {1, . . . ,O} .

(6.20)

Proof. The proof is identical to the proof of Proposition 80. Additionally, the Identity 5.19 was
used to obtain

kA×B((ai, bi), (aj , bj)) = ⟨φA(ai) ⊗ φB(bi), φA(aj) ⊗ φB(bj)⟩ (by definition)
= ⟨φA(ai), φA(aj)⟩ ⟨φB(bi), φB(bj)⟩ (Identity 5.19)
= kA(ai, aj)kB(bi, bj) (by definition).

(6.21)

6.3. RELATIONAL LEARNING USING MMR 83

Proposition 87. (Relational-MMR predictor) The pre-image problem of the relational-MMR
takes the form

x∗(a, b) = arg max
x∈X

O

∑
i=1
αikA(ai, a)kB(bi, b)kX (xi, x) (6.22)

Proof. The parametrization of the learned mappings takes the form

W =
O

∑
i=1
αi(φA(ai) ⊗ φB(bi) ⊗ ψ(xi)), (6.23)

yielding the prediction function

x∗(a, b) = arg max
x∈X

⟨ψ(x),W (φA(a) ⊗ φB(b))⟩ (pre-image problem)

= arg max
x∈X

⟨ψ(x),(
O

∑
i=1
αi(φA(ai) ⊗ φB(bi) ⊗ ψ(xi))) (φA(a) ⊗ φB(b))⟩ (Equation 6.23)

= arg max
x∈X

O

∑
i=1
αi ⟨ψ(x), (φA(ai) ⊗ φB(bi) ⊗ ψ(xi))(φA(a) ⊗ φB(b))⟩ (bilinearity i.p.)

= arg max
x∈X

O

∑
i=1
αi ⟨ψ(x), ψ(xi)(φA(ai) ⊗ φB(bi))′(φA(a) ⊗ φB(b))⟩ (Kronecker product)

= arg max
x∈X

O

∑
i=1
αi ⟨ψ(x), ψ(xi) ⟨φA(ai) ⊗ φB(bi), φA(a) ⊗ φB(b)⟩⟩ (u′v = ⟨u, v⟩)

= arg max
x∈X

O

∑
i=1
αi ⟨φA(ai) ⊗ φB(bi), φA(a) ⊗ φB(b)⟩ ⟨ψ(x), ψ(xi)⟩ (bilinearity i.p.)

= arg max
x∈X

O

∑
i=1
αikA(ai, a)kB(bi, b)kX (xi, x) (kernel trick)

(6.24)
evaluated on the pair (a, b).

The view on kernel functions as similarity functions, e.g. motivated by Equation 4.64, allows
an intuitive interpretation of the prediction function

x∗(a, b) = arg max
x∈X

O

∑
i=1
αi kA(ai, a)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
row score

kB(bi, b)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶

column score

kX (xi, x)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
entry score

. (6.25)

The optimizer of the pre-image problem x∗ maximizes the weighted combination of the agree-
ment with all observed entries of the table where the agreement with entries of similar rows and
columns is emphasized due to the row- and column-kernels.

6.3.3 Solving the Optimization Problem Using Frank-Wolfe

Optimization Problem 6.20, the dual problem of the MMR, is a constrained quadratic optimiza-
tion problem. Since the optimization only depends on the dual parameter vector α ∶= (α1,⋯, αO)′
the objective function

g(α) = 1
2
O

∑
i=1

O

∑
j=1

αiαj kA(ai, aj)kB(bi, bj)kX (xi, xj)
´¹¹¸¹¹¹¶

=∶Kij

− 1′α (6.26)

84 CHAPTER 6. STRUCTURED OBJECT IMPUTATION

can be written compactly by using vector- and matrix multiplications

g(α) = 1
2
O

∑
i=1

O

∑
j=1

αiKijαj − 1′α (Equation 6.26)

= 1
2
α′Kα − 1′α (matrix-vector multiplication).

(6.27)

Therefore, Optimization Problem 6.20 can be equivalently written as

min 1
2α

′Kα − 1′α =∶ g(α)
w.r.t. α ∈ R∣D∣

s.t. 0 ≤ αi ≤ C, i ∈ {1, . . . ,O} .
(6.28)

Requirements

The objective function g is a convex differentiable function and the constraints restrict the
domain of the optimization problem to an O-dimensional hypercube [0,C]O, which is a convex
compact subset of RO.

In order to recognize that g is a convex function, the fact that K is a symmetric positive
semidefinite matrix and Proposition 88 are used. The symmetry and positive semidefiniteness of
the matrix K follow from the symmetry and positive semidefiniteness of the joint kernel function
k((ai, bi, xi), (aj , bj , xj)) = kA(ai, aj)kB(bi, bj)kX (xi, xj) comprising its entries.

Proposition 88. (Convexity of quadratic form) For a symmetric positive semidefinite (p.s.d.)
matrix Q ∈ Rn×n the function

h(x) ∶= 1
2
x′Qx + c′x (6.29)

is convex.

Proof. The function h is convex if the inequality

h(tx + (1 − t)y) ≤ th(x) + (1 − t)h(y) (6.30)

holds for all x, y ∈ Rn and for all t ∈ [0,1]. By the expansion of Definition 6.29 in Inequality
6.30, we get
1
2
(tx+(1− t)y)′Q(tx+(1− t)y)+ c′(tx+(1− t)y) ≤ t(1

2
x′Qx+ c′x)+ (1− t)(1

2
y′Qy + c′y), (6.31)

where it is easy to observe that the linear terms cancel each other.
Therefore, consideration of the left hand side of Inequality 6.31 and estimation from above

with the right hand side
1
2
(tx + (1 − t)y)′Q(tx + (1 − t)y)

= 1
2
(y + t(x − y))′Q(y + t(x − y))

= 1
2
(y′Qy + t(x − y)′Qy + ty′Q(x − y) + t2(x − y)′Q(x − y)) (bilinerity of i.p.)

= 1
2
y′Qy + t(x − y)′Qy + 1

2
t2®
≥t

(x − y)′Q(x − y)
´¹¹¸¹¹¶

≥0

(symmetry of Q & i.p.)

≥ 1
2
y′Qy + t(x − y)′Qy + 1

2
t(x − y)′Q(x − y) (p.s.d. of Q)

= 1
2
(1 − t)y′Qy + 1

2
tx′Qx (symmetry of Q & i.p.)

(6.32)

6.3. RELATIONAL LEARNING USING MMR 85

yields the convexity of h.

Consequently, the requirements of the Frank-Wolfe algorithm, see Appendix 6.A, which is
an iterative algorithm designed to solve constrained optimization problems, are satisfied and it
can be applied.

Solution of the Linear Sub-problem

The only thing missing for the application of the Frank-Wolfe algorithm is the solution of the
linear sub-problem

min ⟨Kα − 1, s⟩ = ∇g(α)′s
w.r.t. s ∈ R∣D∣

s.t. 0 ≤ si ≤ C, i ∈ {1, . . . , ∣D∣} ,
(6.33)

which is required in every step.
For the proof of the following proposition we need the supremum norm and the 1-norm,

which is a special case of the p-norm.

Definition 89. (Supremum norm) The supremum norm of a vector in Rd is defined as

∥ ⋅ ∥∞ ∶ Rd ↦ [0,∞) ∶ x↦ sup
i∈{1,...,d}

∣xi∣. (6.34)

Definition 90. (p-norm) For 1 ≤ p < ∞ the p-norm of a vector in Rd is defined as

∥ ⋅ ∥p ∶ Rd ↦ [0,∞) ∶ x↦ (
d

∑
i=1

∣xi∣p)
1
p

. (6.35)

Proposition 91. (MMR sub-problem solution) The i-th component of a minimizer s∗ of Opti-
mization Problem 6.33 is

s∗i =
C

2
− sign((∇g(α))i)

C

2
=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 , for (∇g(α))i > 0
C , for (∇g(α))i < 0
C/2 , for (∇g(α))i = 0,

(6.36)

in which sign denotes the signum function. Note that in the case (∇g(α))i = 0 the i-th component
of s∗ is not uniquely determined.

Proof. In order to prove Equation 6.33 it suffices to realize that the constrained domain

M ∶= {α ∈ R∣D∣ ∶ ∀i ∈ {1, . . . , ∣D∣} ∶ 0 ≤ αi ≤ C} (6.37)

shifted by the vector 1−C
2 is a multiple of the unit ball of the supremum norm, i.e.

M− 1C
2
= {β ∈ R∣D∣ ∶ β = α − 1C

2
, α ∈ M}

= {β ∈ R∣D∣ ∶ ∀i ∈ {1, . . . , ∣D∣} ∶ −C
2
≤ βi ≤

C

2
}

= {β ∈ R∣D∣ ∶ ∥β∥∞ ≤ C
2
} (Definition 6.34)

=∶ B∞
C
2
(0),

(6.38)

86 CHAPTER 6. STRUCTURED OBJECT IMPUTATION

and to follow the steps of the proof for optimization over the lp-ball by Jaggi (2012).
The first equality in Derivation 6.38 implies that for every element s ∈ M there is an element

t ∈ B∞
C
2
(0) with s = t+1C2 . Therefore, the minimization of ⟨∇g(α), s⟩ w.r.t. s ∈ M can be written

as minimization of ⟨∇g(α), t + 1C2 ⟩ w.r.t. t ∈ B∞
C
2
(0) which doesn’t depend on ⟨∇g(α),1C2 ⟩.

After omitting ⟨∇g(α),1C2 ⟩, changing the minimization problem into a maximization problem
and defining u as −∇g(α), Optimization Problem 6.33 can be equivalently rewritten as

max ⟨u, t⟩
w.r.t. t ∈ B∞

C
2
(0). (6.39)

The estimation from above using the Hölder’s inequality2 yields

⟨u, t⟩ ≤
∣D∣

∑
i=1

∣uiti∣ (triangle inequality)

≤ ∥u∥1∥t∥∞ (Hölder’s inequality)

≤ ∥u∥1 ⋅
C

2
(for t ∈ B∞

C
2
(0)).

(6.40)

The derivation

∥u∥1 ⋅
C

2
=

∣D∣

∑
i=1

∣ui∣
C

2
(Definition 6.35)

=
∣D∣

∑
i=1
uisign(ui)

C

2
(Definition of ∣ ⋅ ∣)

(6.41)

and back-substitution of u leads to the following representation for the maximizer

t∗i ∶= sign(−(∇g(α))i)
C

2
. (6.42)

Consequently, s∗ ∈ M is given by Equation 6.36.

Computational Complexity

Typically, the cardinality of the observed sub-domain is large, even for sparsely filled data tables.
A one thousand times one thousand table has one million entries and in practice data tables
are much larger than that. For example, the Netflix Price Dataset published by Bennett et al.
(2007) contains information about 480,189 rows (users) and 17,770 columns (movies) in the form
of 2,817,131 (user, movie, rating) triplets.

Therefore, a constrained quadratic optimization problem, parametrized by a very large ma-
trix needs to be solved. According to Appendix 6.A, the computational costs for achieving that
the error between the k-th iterate and the optimal solution α∗ is in O(1

k), i.e.

∣g(α(k)) − g(α∗)∣ ∈ O(1
k
), (6.43)

are k Frank-Wolfe iterations. The computational costs of one iteration are dominated by the
computation of the gradient ∇g(α(k)) and the solution of the linear sub-problem.

The gradient of the objective function g is

∇g(α) =Kα − 1, (6.44)
2For further details and the proof of the Hölder inequality, we refer the interested reader to Trèves (1967).

6.4. MAXIMUM MARGIN MULTI VALUED MAPPINGS (MMMVM) 87

therefore, its computation corresponds roughly to a matrix-vector multiplication, which costs
are in O(O2). Using Proposition 91, the computational costs of the linear sub-problem are in
O(O). As a consequence, the computational complexity of one iteration is O(O2), which is too
large for many practical applications.

6.4 Maximum Margin Multi Valued Mappings (MMMVM)
The MMMVM, developed by Sandor Szedmak, is a structured output method that addresses
missing value problems by interpreting the data table as the observation of a potentially ”struc-
tured object valued”-relation. In order to overcome the computational problems occurring, if
a structured output method is naively applied to the task of learning a relation, a swarm of
weakly coupled learners is introduced. In addition to the computational benefits, the utilization
of a swarm of learners instead of one single learner allows for the exploitation of local trends.

The underlying idea stems from manifolds, where the potentially complex structure of a
manifold can be described by an atlas consisting of several charts, i.e. mappings from subsets
of the manifold to a hyperplane. For a smooth manifold those charts agree on overlaps. When
learning a relation from a partially observed table we are in a similar situation. Assuming the
data lives on a manifold, the learning task could be solved by finding the inverse mapping for
every mapping in the atlas. In practice, we don’t have an atlas, which is why this approach
cannot be applied directly. However, if the learners are simply assigned to subsets of the domain,
for example to the rows or the columns, and forced to agree on overlapping areas of their domains
we will be in a similar situation.

Ghazanfar et al. (2011) and Ghazanfar et al. (2012) build a recommender system based
on the MMMVM. Szedmak et al. (2014b) utilize the MMMVM to learn affordances of actions
applied to pairs of objects, for instance the outcome of a stack-action applied to pairs of objects
is learned. Krivić et al. (2015) demonstrate the correspondence between relations and graphs
by using the MMMVM to learn missing edges in partially-known graphs.

6.4.1 Notation

For mathematical convenience let Da− and D−b denote the set of observed columns in the row
indexed by a ∈ A and the set of observed rows in the column indexed by b ∈ B respectively,

Da− ∶= {b ∈ B ∶ (a, b) ∈ D} (6.45)

and
D−b ∶= {a ∈ A ∶ (a, b) ∈ D}. (6.46)

Note that D can be written as
D = {(a, b) ∈ A × B ∶ a ∈ A and b ∈ Da−}
= {(a, b) ∈ A × B ∶ b ∈ B and a ∈ D−b}.

(6.47)

Additionally for a vector v in R∣D∣, let

va ∶= (vab)′b∈Da− (6.48)

denote the part of the vector
v ∶= (va)′a∈A (6.49)

corresponding to Da− and
vb ∶= (vab)′a∈Db− (6.50)

denote the part of v corresponding to Db−.

88 CHAPTER 6. STRUCTURED OBJECT IMPUTATION

6.4.2 Defining the Swarm of Learners

One way to overcome the difficulties that arise, when applying MMR directly to the relational
dataset, is to distribute the available data among various cooperating learners. A properly
configured swarm of learners can capture complicated data manifolds, while preserving compu-
tational efficiency.

For example we could attach one learner to each row, i.e.

F̃a ∶ HφB →Hψ ∶ φB(b) ↦Wa(φA(a) ⊗ φB(b)),∀a ∈ A ∶ ∃b ∈ B s.t. (a, b) ∈ D. (6.51)

The learner F̃a takes the feature representation of a column φB(b) ∈ HφB and maps it to an
element in the label space Wa(φA(a)⊗φB(b)) ∈ Hψ corresponding to the entry xab in the table.
Without further modifications the resulting swarm of learners would be independent, meaning
that the prediction F̃a(φB(b)) for entry xab and the prediction F̃a′(φB(b)) for entry xa′b would
not affect each other. Although computational efficiency is gained that way an important source
of information is lost.

For many practical applications the predictions F̃a(φB(b)) and F̃a′(φB(b)) should influence
each other. Just think of the Netflix Price dataset mentioned earlier. Clearly, in many cases the
rating of movie b by user a tells us about something about the rating of movie b by user a′. If
movie b is a brilliant movie it will be likely that both ratings xab and xa′b are high. Similarly,
if movie b is bad it will be likely that both ratings are low. In other words, it is fair to assume
that ratings of the same movie are consistent with each other to a certain degree.

In order to incorporate this kind of interaction between the learners an appropriate coupling
rule has to be applied. Szedmak et al. (2015) couple the learners by forcing them to share
the same slack. Following that line, one slack variable for every column with observed entries,
instead of having one slack variable for every observed entry in the table, is used. The resulting
optimization problem is

min ∑a∈A ∥Wa∥2
Frobenius +C∑b∈B ξb

w.r.t. Wa ∶ HφA ⊗HφB →Hψ, ξ ∈ R∣B∣,

s.t. ⟨ψ(xab),Wa(φA(a) ⊗ φB(b))⟩Hψ ≥ 1 − ξb, for a ∈ A and b ∈ Da−,
ξb ≥ 0, for b ∈ B.

(6.52)

This way the predictions of the learners cannot vary independently for shared columns, since
for a fixed column b ∈ B the optimization problem requires the slack ξb attached to it to be
minimized and that the inequalities

∀a ∈ A ∶ ⟨ψ(xab),Wa(φA(a) ⊗ φB(b))⟩Hψ ≥ 1 − ξb
⇔∀a ∈ A ∶ ξb ≥ 1 − ⟨ψ(xab),Wa(φA(a) ⊗ φB(b))⟩Hψ

´¹¹¹¸¹¹¶
error by learner F̃a

(6.53)

are satisfied. Therefore, in order to minimize ξb the errors have to be uniformly minimized.

Remark 92. (Utilizing local trends) Due to the fact, that learners are assigned to rows and
constraints to the columns it an be useful to reorganize the table before applying the MMMVM.
For example, in an image reconstruction task one could like to utilize the local smoothness of
pixel values. In order to do so one learner could be assigned to every image patch and one
constraint to every intensity interval.

In general, two separating partitions of A× B are required, i.e. two collections of subsets of
A×B R and C satisfying

6.4. MAXIMUM MARGIN MULTI VALUED MAPPINGS (MMMVM) 89

1. ⋃R∈RR = A×B,

2. ⋃C∈C C = A × B,

3. ∀R ∈ R,C ∈ C ∶ R ∩ C contains at most one element and

4. ∀(a, b) ∈ A × B ∶ ∃! (R,C) ∈ R ×C with R∩ C = (a, b).

Utilizing those two separating partitions a new table with one row per subset R ∈ R and one
column per subset C ∈ C can be obtained. The entry in row R ∈ R and column C ∈ C for which
the equality R∩ C = {(a, b)} holds is xab.

6.4.3 Kernel Version

In the following let kA(ai, aj) ∶= ⟨φA(ai), φA(aj)⟩, kB(bi, bj) ∶= ⟨φB(bi), φB(bj)⟩ and kX (xi, xj) ∶=
⟨ψ(xi), ψ(xj)⟩ denote the kernels corresponding to the representation spaces.

Proposition 93. (MMMVM kernel version) The dual problem of Optimization Problem 6.52 is
given by

min 1
2 ∑a∈A∑b,b′∈Da− αabαab′kA(a, a)kB(b, b

′)kX (xab, xab′) −∑(a,b)∈D αab
w.r.t. αab ∈ R for (a, b) ∈ D
s.t. ∑a∈D−b αab ≤ C, for b ∈ B

αab ≥ 0, for (a, b) ∈ D.

(6.54)

Proof. In order to obtain the kernel version the Lagrange dual function needs to be considered.
The Lagrange dual function g is defined as the infimum of the Lagrangian with respect to the
parameters of the objective function and gives us a lower bound for the objective function f.
Let’s refer to the objective function as f

f(W,ξ) ∶= 1
2 ∑a∈A

∥Wa∥2
Frobenius +C∑

b∈B

ξb, (6.55)

whereW denotes the tuple (Wa)a∈A. The corresponding Lagrangian function can be obtained by
converting the greater-than-equal constraints into lower-than-equal constraints, by multiplying
with minus one and using the definition of the Lagrangian function (Definition 2.69), resulting
in

L(W,ξ,α, β) ∶= f(W,ξ) − ∑
(a,b)∈D

αab (⟨ψ(xab),Wa(φA(a) ⊗ φB(b)⟩ − 1 + ξb) − ∑
b∈B

βbξb. (6.56)

The Lagrange dual function
g(α,β) ∶= inf

W,ξ
L(W,ξ,α, β) (6.57)

provides a lower bound on the objective function g(α,β) ≤ f(W,ξ). The infimum can be found
by setting the derivatives with respect to W and ξ to zero:

∂L

∂Wa

!= 0,∀a ∈ A (6.58)

∂L

∂ξ

!= 0 (6.59)

90 CHAPTER 6. STRUCTURED OBJECT IMPUTATION

When using the Frobenius norm ∥Wa∥2
Frobenius = tr(W ′

aWa), the derivative with respect to
Wa becomes

∂L

∂Wa
=Wa − ∑

(a,b)∈D

αabψ(xab)(φA(a) ⊗ φB(b))′, (6.60)

because of the already known derivation rules

∂tr(W ′
aWa)

∂Wa
= 2Wa (6.61)

and
∂ ⟨ψ(xab),Wa(φA(a) ⊗ φB(b)⟩

∂Wa
= ψ(xab)(φA(a) ⊗ φB(b))′. (6.62)

Therefore, Wa can be expressed in terms of α

Wa = ∑
(a,b)∈D

αabψ(xab)(φA(a) ⊗ φB(b))′. (6.63)

The derivative with respect to ξb is

∂L

∂ξb
= C − ∑

a∈D−b

αab − βb. (6.64)

By rearranging the terms and using the fact that βb ≥ 0, the Lagrange function is minimized
with respect to ξb when the inequality

∑
a∈D−b

αab = C − βb®
≥0

≤ C (6.65)

is satisfied. The Lagrange dual function now can be written explicitly by substituting Equation
6.63 and Equation 6.65 into Equation 6.56. After simplification we obtain

g(α) = −1
2 ∑a∈A

∑
b,b′∈Da−

αabαab′ ⟨φA(a) ⊗ φB(b), φA(a) ⊗ φB(b′)⟩ ⟨ψ(xab), ψ(xab′)⟩ + ∑
(a,b)∈D

αab,

(6.66)
where the parameter β does not occur any longer. Since the dual is a lower bound on the
objective function f it has to be maximized to find the best α, which is equivalent to minimizing
(−1)g(α), resulting in the Optimization Problem 6.54.

Proposition 94. (MMMVM Predictor) The MMMVM prediction function takes the form

x∗(a, b) = arg max
x∈X

∑
b′∈Da−

αab′kB(b′, b)kX (xab′ , x). (6.67)

Proof. Expression 6.67 is obtained by substituting Wa with Expression 6.63 in

x∗(a, b) = arg max
x∈X

⟨ψ(x),Wa(φA(a) ⊗ φB(b))⟩ . (6.68)

After performing analogous simplifications as in Derivation 6.24 the identity

x∗(a, b) = arg max
x∈X

∑
b′∈Da−

αab′kA(a, a)kB(b′, b)kX (xab′ , x) (6.69)

is obtained. Omitting kA(a, a), which is a constant term with respect to x and thereby does not
influence the maximization, results in Expression 6.67.

6.4. MAXIMUM MARGIN MULTI VALUED MAPPINGS (MMMVM) 91

Again the prediction function admits an intuitive interpretation

x∗(a, b) = arg max
x∈X

∑
b′∈Da−

αab′ kB(b′, b)
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶

column score

kX (xab′ , x)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
entry score

. (6.70)

The optimizer of the pre-image problem x∗ maximizes the weighted combination of the agree-
ment with all observed entries in the same row, where the agreement with entries of similar
columns is emphasized due to the column-kernels.

Additionally, the fact that the prediction of an element in row a only depends on the part
of α corresponding to the learner assigned to that row allows every row to follow an individual
trend. This property is particularly appealing, when applying the MMMVM on a collaborative
filtering type of problem, where the rows could correspond to users for instance.

6.4.4 Solving the Optimization Problem Using Frank-Wolfe

Let’s have a look at Optimization Problem 6.54, the dual problem of the MMMVM, and compare
it to Optimization Problem 6.20. First of all, we simplify the expression consisting of the nested
sums in the objective function of Optimization Problem 6.54

∑
a∈A

∑
b,b′∈Da−

αabαab′kA(a, a)kB(b, b′)kX (xab, xab′)

= ∑
a∈A

kA(a, a) ∑
b,b′∈Da−

αabαab′ kB(b, b′)kX (xab, xab′)
´¹¹¸¹¹¹¶

=∶Ka
bb′

(pull out kA(a, a))

= ∑
a∈A

kA(a, a) ∑
b,b′∈Da−

αabK
a
bb′αab′ (substitution)

= ∑
a∈A

kA(a, a) α′aKaαa (matrix-vector mult.),

(6.71)

where Ka ∈ R∣Da−∣×∣Da−∣ captures all the kernel evaluations associated to learner Wa and αa
denotes the corresponding vector of dual parameters (αab)′b∈Da− . Note that kA(a, a) only acts
as a scaling factor, for mathematical convenience we assume normalized feature vectors in the
following, i.e.

∀a ∈ A ∶ 1 != ∥φA(a)∥2
2 (= kA(a, a)). (6.72)

After using some linear algebra, the nested sums can be written as

∑
a∈A

kA(a, a) α′aKaαa

= ∑
a∈A

α′aK
aαa (∀a ∈ A ∶ kA(a, a) = 1)

= α′Kα,

(6.73)

where α ∈ R∣D∣ is defined as the concatenation of all αa’s

α ∶= (αa)′a∈A (6.74)

and K ∈ R∣D∣×∣D∣ is defined as a block-diagonal matrix containing the matrices Ka, for a ∈ A,
in the diagonal

K ∶=

⎛
⎜⎜⎜⎜⎜⎜
⎝

Ka1 0 0 ⋯ 0
0 Ka2 0 ⋯ 0
0 0 ⋱ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ ⋯ Ka∣A∣

⎞
⎟⎟⎟⎟⎟⎟
⎠

. (6.75)

92 CHAPTER 6. STRUCTURED OBJECT IMPUTATION

Note that in Equation 6.75 we wrote A as {a1, . . . , a∣A∣} and additionally, the zeros are matrices
of proper dimension filled with zeros, for instance the first zero-matrix in the first row is of
dimension ∣Da1−∣ × ∣Da2−∣.

Therefore, Optimization Problem 6.54 can be equivalently written as

min 1
2α

′Kα − 1′α =∶ g(α)
w.r.t. α ∈ R∣D∣

s.t. ∑a∈D−b αab ≤ C, for b ∈ B
αab ≥ 0, for (a, b) ∈ D.

(6.76)

Requirements

The objective function g is of the same type as the one in Optimization Problem 6.28. Thus,
it is a convex differentiable function and according to the following proposition the constraints
restrict the domain to a compact convex set.

Proposition 95. (Compactness and convexity of the domain) Let M denote the restricted
domain

M ∶= {α ∈ R∣D∣ ∶ αab ≥ 0, for (a, b) ∈ D and ∑
a∈D−b

αab ≤ C, for b ∈ B}. (6.77)

M is a compact convex subset of R∣D∣.

Proof. The compactness ofM follows from the relation

M⊂ [0,C]∣D∣, (6.78)

because [0,C]∣D∣ is compact and subsets of compact sets are compact.
A short derivation shows the convexity of the domain. M is convex if the property

∀α, α̃ ∈ M ∶ ∀t ∈ [0,1] ∶ (1 − t)α + tα̃ ∈ M (6.79)

is satisfied.
Consider arbitrary α, α̃ ∈ M. Obviously, the property

∀t ∈ [0,1] ∶ ((1 − t)α + tα̃)ab ≥ 0 (6.80)

holds, since the inequalities t ≥ 0, (1 − t) ≥ 0, αab ≥ 0 and α̃ab ≥ 0 hold. Additionally, for all
t ∈ [0,1] and for all b ∈ B the inequality

∑
a∈D−b

((1 − t)α + tα̃)ab ≤ C (6.81)

holds, because of the simple derivation

∑
a∈D−b

((1 − t)α + tα̃)ab = (1 − t) ∑
a∈D−b

αab + t ∑
a∈D−b

α̃ab ≤ (1 − t)C + tC = C. (6.82)

Consequently, the requirements of the Frank-Wolfe algorithm are fulfilled and it can be
applied.

6.4. MAXIMUM MARGIN MULTI VALUED MAPPINGS (MMMVM) 93

Solution of the Linear Sub-problem

Step 1 of the Frank-Wolfe Algorithm 1 requires the solution of the linear sub-problem

min ⟨Kα − 1, s⟩ = ∇g(α)′s
w.r.t. s ∈ R∣D∣

s.t. ∑a∈D−b sab ≤ C, for b ∈ B
sab ≥ 0, for (a, b) ∈ D.

(6.83)

Proposition 96. (MMMVM sub-problem solution) Szedmak et al. (2015) show that the mini-
mizer s∗ of Optimization problem 6.83 can be obtained by setting

(s∗b)i =
⎧⎪⎪⎨⎪⎪⎩

C if i = arg mink∈{1,...,∣D−b∣}(∇g(α))k and (∇g(α))k < 0,
0 otherwise

(6.84)

for all i ∈ {1, . . . , ∣D−b∣} and for all b in B.

Proof. Thanks to the linearity of ⟨∇g(α), ⋅⟩ and the nature of its constraints, Optimization
Problem 6.83 can be split up into independent sub-problems.

Rewriting the objective function ∇g(α)′s utilizing Notation 6.50 yields

∇g(α)′s = ∑
(a,b)∈D

(∇g(α))absab (per definition)

= ∑
b∈B

∑
a∈D−b

(∇g(α))absab (Equation 6.47)

= ∑
b∈B

⟨(∇g(α))b, sb⟩ (definition i.p.).

(6.85)

Putting the result of Derivation 6.85 back into Optimization Problem 6.83 leads to the opti-
mization problem

min ∑b∈B ⟨(∇g(α))b, sb⟩
w.r.t. s ∈ R∣D∣

s.t. ⟨1, sb⟩ ≤ C, for b ∈ B
sab ≥ 0, for (a, b) ∈ D,

(6.86)

in which every summand can be considered individually as there are no dependencies between
them. Therefore, solving Optimization Problem 6.83 is equivalent to solving the optimization
problem

min ⟨(∇g(α))b, sb⟩
w.r.t. sb ∈ R∣D−b∣

s.t. ⟨1, sb⟩ ≤ C,
sab ≥ 0, for a ∈ D−b

(6.87)

for all b in B independently. According to Szedmak et al. (2015) the solution of Optimization
Problem 6.87 is given by Equation 6.84, which seems intuitive as it emphasizes the most negative
component of the part of the gradient corresponding to the constraint b as much as possible.

Computational Complexity

In contrast to Optimization Problem 6.28, in which the complexity of Frank-Wolfe iteration was
O(∣D∣2), the matrix parameterizing Optimization Problem 6.76 is a block-diagonal matrix. The

94 CHAPTER 6. STRUCTURED OBJECT IMPUTATION

combination of the block-diagonal structure of K with the sparsity of the optimal solution of
the linear sub-problem allows for an efficient computation of the gradient.

Szedmak et al. (2015) show that the complexity of the gradient computation can be reduced
to linear complexity, i.e. to O(∣D∣) operations, by using the update rule

(∇g(α(k)))a ∶= γKas∗a + (1 − γ)(∇g(α(k−1)))a, (6.88)

and that s∗ can be computed in linear time. The estimate for the complexity of the gradient
computation is obtained by bounding the size of the Ka blocks in a clever way.

Therefore, the worst-case computational complexity of one Frank-Wolfe iteration is O(∣D∣),
which is a significant improvement compared to the O(∣D∣2) complexity of the relational MMR.

6.5 Application Example - Missing Edges in Multiplex Net-
works

”A multiplex network is a graph defined over a set of nodes linked by different types
of relations.” (Pujari and Kanawati, 2015)

In this section a sub-problem of a robot planning task, in which a robot needs to plan its
actions to achieve a specific goal, is considered. Such a goal could be to build a tower of maximum
height composed of a subset of objects in the environment. In order to plan its actions, the robot
needs information about its environment, in particular how it can interact with pairs of objects.
These possible interactions between the robot and the pairs of objects are called affordances. An
example of an affordance for the ”stack action” of a robot could be: ”objecti can be stacked on
objectj”. Therefore, the objective of the robot’s machine learning module is to infer the missing
affordances of a partially known affordance table.

6.5.1 Details about the Dataset

The dataset contains affordances for all pairs of a set of 82 objects. For every object pair there
are four different types of affordances. One of these could correspond to the ”stack-ability of
objects” and could have the manifestations: ”object1 can be placed on object2”,”object2 can be
placed on object1” and ”object1 and object2 cannot be stacked”3. Three of the affordance types
have three different manifestations and the remaining one has four different manifestations. As
a result, the output space of interest contains 33 ⋅ 41 = 108 different affordance vectors.

The described dataset can be interpreted as a multiplex network, in which nodes correspond
to objects and edges to affordances between them. Figure 6.1 shows a layer-wise depiction of a
sub-network composed by ten objects.

6.5.2 Application of the MMR & MMMVM

In order to address the learning problem with the relational MMR or the MMMVM, the mul-
tiplex network is represented as a vector valued table. The entries of the table are interpreted
as structured objects. In this example the sets indexing the rows A and the columns B are
identical, namely, A = B = {Object1, . . . ,Object82} and the entries of the table are elements of
X which is a subset of R4.

The only requirement for the application of the relational MMR and MMMVM is the choice of
kernel functions and the penalty parameter C. For the sake of simplicity normalized polynomial

3Unfortunately, this information is not available for us.

6.5. APPLICATION EXAMPLE - MISSING EDGES IN MULTIPLEX NETWORKS 95

(a) Layer 1 (b) Layer 2

(c) Layer 3 (d) Layer 4

Figure 6.1: A layer-wise depiction of a subset of the multiplex network. The red circles corre-
spond to objects and colored edges to different interaction types.

kpoly(x, y) =
(⟨x, y⟩ + b)p√

(⟨x,x⟩ + b)p ⋅ (⟨y, y⟩ + b)p
(6.89)

and radial basis function kernels

krbf(x, y) = e−
∥x−y∥2

2σ2 , (6.90)

in which ⟨⋅, ⋅⟩ is the scalar product of Rd and ∥ ⋅ ∥ the corresponding norm, are considered.
As a consequence, the kernel functions

kX (x1, x2) ∶= kt(x1, x2), (6.91)

kA(a1, a2) ∶= kt(ra1 , ra2) (6.92)

and
kB(b1, b2) ∶= kt(cb1 , cb2), (6.93)

in which ra ∶= (xab)b∈Da− is the concatenation of all vectors in row a, cb ∶= (xab)a∈D−b is the
concatenation of all vectors in column b and t is a placeholder for poly or rbf , are obtained.
The remaining parameters b, p, σ and C can be found by cross-validation or simply by trial and
error.

96 CHAPTER 6. STRUCTURED OBJECT IMPUTATION

6.5.3 Experimental Setup and Results

The relational MMR and the MMMVM were applied on different fractions of the table in order
to predict the missing entries. Fractions ranging from three percent to 99 percent of the entries
were considered. Each random split into observed and missing entries was repeated five times.

Figure 6.2 depicts the comparison of the relational MMR and the MMMVM using polynomial
and radial basis function kernels. For the polynomial row and column kernels the parameters
b = 1 and p = 15 and for the polynomial entry kernels the parameters b = 1 and p = 4 were
used. For the radial basis function row, column and entry kernels the parameter σ = 1 was used.
Additionally, as a baseline method a mode imputation was used.

Two performance measures were considered:

• Accuracy - the fraction of correctly predicted affordance vectors.

• Pointwise Accuracy - the fraction of correctly predicted affordance vector entries.

It is to be noted, that in this comparison all four methods behave similarly. This observation
becomes particularly clear considering the pointwise accuracy plot. Nevertheless, for the param-
eters used the polynomial kernels worked slightly better than the radial basis function kernels.
Equally, the relational MMR behaved slightly better than the MMMVM. Using the polyno-
mial kernels for both the relational MMR and the MMMVM already twenty percent of the
edges suffice to recover more than eighty percent of the missing missing edges in the multiplex
network.

6.5. APPLICATION EXAMPLE - MISSING EDGES IN MULTIPLEX NETWORKS 97

(a) Accuracy

(b) Pointwise Accuracy

Figure 6.2: Relational MMR and MMMVM were evaluated on different fractions of observed
data using various kernels. The blue line corresponds to the relational MMR using polynomial
kernels, the green line to the relational MMR using radial basis function kernels, the red line to
the MMMVM using polynomial kernels, the light blue line to the MMMVM using radial basis
function kernels and the pink line to a ”most frequent value”-imputation. The error bars depict
the standard deviation over five repetitions of randomly splitting the data.

98 CHAPTER 6. STRUCTURED OBJECT IMPUTATION

Appendix

6.A The Frank-Wolfe Algorithm

6.A.1 Problem Statement

For a compact convex subset D of a vector space and a convex differentiable real-valued function
f ∶ D → R the conditional gradient algorithm developed by Frank and Wolfe (1956) solves the
optimization problem

min f(x)
w.r.t. x ∈ D. (6.94)

6.A.2 Algorithm

The underlying idea of the optimization procedure is to utilize the fact that the local error of
the linear Taylor approximation centered at the point x̃

f(x) = f(x̃) + ∇f(x̃)′(x − x̃) + O(∥x − x̃∥2)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
error magnitude

(6.95)

is small.
Therefore, in order to solve Optimization Problem 6.94 an element x(k) of D is iteratively moved
towards the minimizer s∗ of the optimization problem

min f(x(k)) + ∇f(x(k))′(s − x(k))
w.r.t. s ∈ D, (6.96)

i.e. x(k+1) ∶= x(k) + γ(s∗ − x(k)). Note that the terms without dependency on s can be omitted,
resulting in the linear programming problem

min ∇f(x(k))′s
w.r.t. s ∈ D. (6.97)

Linear programming problems are well studied and general purpose solvers such as the simplex
method introduced by Dantzig (1951) exist.

In summary, the above considerations lead to Algorithm 1, in which different step-size de-

99

100 CHAPTER 6. STRUCTURED OBJECT IMPUTATION

termination policies such as a line search for the optimal step-size would work as well.
Algorithm 1: Frank and Wolfe (1956)
Let x(0) ∈ D
for k ∈ {0, . . . ,K − 1} do

1. Find direction:
s∗ ∶= arg mins∈D ⟨∇f(x(k)), s⟩

2. Determine step-size:
γ ∶= 2

k+2

3. Update:
xk+1 ∶= x(k) + γ(s∗ − x(k))

end
.

6.A.3 Computational Complexity

According to Frank and Wolfe (1956) and Jaggi (2012), the iterates x(k) of Algorithm 1 satisfy

∣f(x(k)) − f(x∗)∣ ∈ O(1
k
), (6.98)

in which x∗ denotes the optimal solution for Optimization Problem 6.94.
Therefore, the sole unknown for the determination of the computational complexity of the
Frank-Wolfe algorithm is the cost of one iteration. In Algorithm 1 the cost of one iteration is
dominated by the computation of the gradient and the solution of the linear sub-problem, since
the determination of the step-size and the update of the iterate are trivial operations.

Chapter 7

Conclusion

We have seen that the kernel trick is a powerful tool that allows for the solution of learning
problems of various generalities in a uniform way. For example, the dual problem of the MMR is
identical to the one of the SVM, except for the fact that in the MMR a more general output ker-
nel than a linear one can be used. Thanks to the connections between reproducing kernel Hilbert
spaces (RKHS), positive definite kernels and feature space mappings a rich toolset for the design
of reproducing kernels and, in further consequence, for the choice of hypothesis spaces has been
obtained. In addition, we have derived the representer theorem for the real valued case, which
states that the optimal solution of the regularized risk minimization problem using a RKHS as
hypothesis space can be represented exclusively in terms of the training data, and informally
extended it to the structured output case by utilizing the notion of joint kernels. Therefore,
potentially infinite dimensional hypothesis functions admit a finite dimensional representation.
Furthermore, we have addressed the missing value problem using the same techniques, by rein-
terpreting and thereby reformulating it as a supervised learning problem. Additionally, the
proposed reformulation allows for the avoidance of problems – in particular, the problem of
multiple missing value patterns – occurring when directly approaching the missing value prob-
lem and for seamless extension to the structured object valued case.
Since the missing value problem is a very general problem, it is of high relevance for various
fields. For instance, in the pharmaceutical analysis of medicaments significant financial sav-
ings are achieved by predicting interactions between molecules, and thereby identifying pairs of
molecules, for which an expensive measuring procedure is worthwhile. In this thesis an analo-
gous problem, namely the problem of predicting object pair affordances in the scope of a robot
learning task has been studied, and the proposed kernel methods have achieved decent results.
Already with a small fraction of observed interactions most of the unknown interactions have
been predicted correctly. In order to identify the ”hard cases”, i.e. the pairs of objects – or
analogously the pairs of molecules – for which the a measurement would be worthwhile, a mea-
surement of certainty about a prediction is necessary. One way to include such a measure into
the proposed kernel methods, is to map the output space into a probabilistic one, and to use
the probability of an output as its certainty.
Bearing in mind that in this thesis only finite output spaces have been considered, the solution
of the pre-image problems required in the prediction step has been trivial. However, in many
practical applications this is not the case. Therefore, further research towards more general
structured output spaces, in particular infinite dimensional ones would be interesting in order
to obtain a general learning framework. Despite this weakness, we have revised a fairly general
learning framework, namely the MMMVM.

We live in a time, in which despite the flood of data, knowledge has remained a scarce
resource. Understanding machine learning methods on a low level could help to shrink this gap

101

102 CHAPTER 7. CONCLUSION

between data and knowledge. Of course, in that process machine learning methods should be
rather regarded as helpful tool than as panacea, since there is a difference between separating
and understanding the data. Researchers of the corresponding fields may be able to gain insights
about their research question, by investigating which aspects of the data were the separating
ones for a decently working machine learning algorithm applied on a related task.

Bibliography

N.I. Akhiezer and I.M. Glazman. Theory of Linear Operators in Hilbert Space. Dover Books
on Mathematics. Dover Publications, 1993. ISBN 9780486677484. URL https://books.
google.de/books?id=GTWMqiuvOAQC.

N. Aronszajn. Theory of reproducing kernels. Transactions of the American Mathematical
Society, 68(3):337–404, 1950. URL http://dx.doi.org/10.2307/1990404.

K. Astikainen, L. Holm, E. Pitkänen, S. Szedmak, and J. Rousu. Towards structured output
prediction of enzyme function. In BMC Proceedings, 2(Suppl 4):S2. 2008.

Gükhan H. Bakir, Thomas Hofmann, Bernhard Schölkopf, Alexander J. Smola, Ben Taskar, and
S. V. N. Vishwanathan. Predicting Structured Data (Neural Information Processing). The
MIT Press, 2007. ISBN 0262026171.

James Bennett, Stan Lanning, and Netflix Netflix. The netflix prize. In In KDD Cup and
Workshop in conjunction with KDD, 2007.

Christopher M. Bishop. Pattern Recognition and Machine Learning (Information Science and
Statistics). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006. ISBN 0387310738.

Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press,
New York, NY, USA, 2004. ISBN 0521833787.

Corinna Cortes and Vladimir Vapnik. Support-vector networks. Mach. Learn., 20(3):273–297,
September 1995. ISSN 0885-6125. doi: 10.1023/A:1022627411411. URL http://dx.doi.
org/10.1023/A:1022627411411.

Corinna Cortes, Mehryar Mohri, and Jason Weston. A general regression framework for learning
string-to-string mappings. 2006.

N. Cristianini and J. Shawe-Taylor. An introduction to Support Vector Machines and other
kernel-based learning methods. Cambridge University Press, 2000.

G. B. Dantzig. Maximization of a Linear Function of Variables Subject to Linear Inequalities,
in Activity Analysis of Production and Allocation, chapter XXI. Wiley, New York, 1951.

C.K. Enders. Applied Missing Data Analysis. Methodology in the social sciences. Guilford Press,
2010. ISBN 9781606236390. URL https://books.google.at/books?id=MN8ruJd2tvgC.

Marguerite Frank and Philip Wolfe. An algorithm for quadratic programming. Naval Research
Logistics Quarterly, 3(1-2):95–110, 1956. ISSN 1931-9193. doi: 10.1002/nav.3800030109. URL
http://dx.doi.org/10.1002/nav.3800030109.

103

https://books.google.de/books?id=GTWMqiuvOAQC
https://books.google.de/books?id=GTWMqiuvOAQC
http://dx.doi.org/10.2307/1990404
http://dx.doi.org/10.1023/A:1022627411411
http://dx.doi.org/10.1023/A:1022627411411
https://books.google.at/books?id=MN8ruJd2tvgC
http://dx.doi.org/10.1002/nav.3800030109

104 BIBLIOGRAPHY

Thomas Gärtner and Shankar Vembu. On structured output training: hard cases and
an efficient alternative. Machine Learning, 76(2):227–242, 2009. ISSN 1573-0565. doi:
10.1007/s10994-009-5129-3. URL http://dx.doi.org/10.1007/s10994-009-5129-3.

Christel Geiss and Stefan Geiss. An introduction to probability theory, 2014. URL https:
//www.jyu.fi/maths/en/research/stochastics/lecture-notes-for-stochastics-1/
probability-1.pdf.

Mustansar Ali Ghazanfar, Sandor Szedmak, and Adam Prugel-Bennett. Incremental kernel
mapping algorithms for scalable recommender systems. In Proceedings of the 2011 IEEE
23rd International Conference on Tools with Artificial Intelligence, ICTAI ’11, pages 1077–
1084, Washington, DC, USA, 2011. IEEE Computer Society. ISBN 978-0-7695-4596-7. doi:
10.1109/ICTAI.2011.183. URL http://dx.doi.org/10.1109/ICTAI.2011.183.

Mustansar Ali Ghazanfar, Adam PrüGel-Bennett, and Sandor Szedmak. Kernel-mapping rec-
ommender system algorithms. Inf. Sci., 208:81–104, November 2012. ISSN 0020-0255. doi:
10.1016/j.ins.2012.04.012. URL http://dx.doi.org/10.1016/j.ins.2012.04.012.

Valery Glivenko and Francesco Cantelli. Sulla determinazione empirica della legge di probabilita.
Giornale dell’Istituto Italiano degli Attuari, (Bd. 4):221–424, 1933. ISSN 0021-2482. URL
https://books.google.at/books?id=QPaFAAAAIAAJ.

Chunhui Gu. Reproducing kernel hilbert spaces, 2008. URL http://people.eecs.berkeley.
edu/~bartlett/courses/281b-sp08/7.pdf.

Jacques Hadamard. Sur les problèmes aux dérivés partielles et leur signification physique. Prince-
ton University Bulletin, 13:49–52, 1902.

Paul R. Halmos. Finite-Dimensional Vector Spaces. 1974. ISBN 0-387-90093-4. Reprint of the
Second edition published by Van Nostrand, Princeton, NJ, 1958.

Tobias Hell and Lukas Neumann. Topologie und funktionalanalysis, 2012. URL https://
numerical-analysis.uibk.ac.at/images/User-Data/Tobias-Hell/Analysis4SS12.pdf.

Ralf Herbrich. Learning Kernel Classifiers: Theory and Algorithms. MIT Press, Cambridge,
MA, USA, 2001. ISBN 026208306X.

David Hilbert. Grundzüge einer allgemeinen theorie der linearen integralrechnungen. (erste mit-
teilung). Nachrichten von der Gesellschaft der Wissenschaften zu GÃűttingen, Mathematisch-
Physikalische Klasse, 1904:49–91, 1904. URL http://eudml.org/doc/58572.

David Hilbert. Grundzüge einer allgemeinen theorie der linearen integralgleichungen. In
A. Pietsch, editor, Integralgleichungen und Gleichungen mit unendlich vielen Unbekannten,
volume 11 of Teubner-Archiv zur Mathematik, pages 8–171. Vieweg+Teubner Verlag, 1989.
ISBN 978-3-322-00681-3. doi: 10.1007/978-3-322-84410-1_1. URL http://dx.doi.org/10.
1007/978-3-322-84410-1_1.

Thomas Hofmann, Bernhard Schölkopf, and Alexander J. Smola. A review of kernel methods
in machine learning, 2006.

John E. Hopcroft and Jeffrey D. Ullman. Introduction To Automata Theory, Languages, And
Computation. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1st edition,
1990. ISBN 020102988X.

http://dx.doi.org/10.1007/s10994-009-5129-3
https://www.jyu.fi/maths/en/research/stochastics/lecture-notes-for-stochastics-1/probability-1.pdf
https://www.jyu.fi/maths/en/research/stochastics/lecture-notes-for-stochastics-1/probability-1.pdf
https://www.jyu.fi/maths/en/research/stochastics/lecture-notes-for-stochastics-1/probability-1.pdf
http://dx.doi.org/10.1109/ICTAI.2011.183
http://dx.doi.org/10.1016/j.ins.2012.04.012
https://books.google.at/books?id=QPaFAAAAIAAJ
http://people.eecs.berkeley.edu/~bartlett/courses/281b-sp08/7.pdf
http://people.eecs.berkeley.edu/~bartlett/courses/281b-sp08/7.pdf
https://numerical-analysis.uibk.ac.at/images/User-Data/Tobias-Hell/Analysis4SS12.pdf
https://numerical-analysis.uibk.ac.at/images/User-Data/Tobias-Hell/Analysis4SS12.pdf
http://eudml.org/doc/58572
http://dx.doi.org/10.1007/978-3-322-84410-1_1
http://dx.doi.org/10.1007/978-3-322-84410-1_1

BIBLIOGRAPHY 105

Martin Jaggi. Revisiting Frank-Wolfe: Projection-Free Sparse Convex Optimization. submitted,
2012.

Dietmar Jannach, Markus Zanker, Alexander Felfernig, and Gerhard Friedrich. Recommender
Systems: An Introduction. Cambridge University Press, New York, NY, USA, 1st edition,
2010. ISBN 0521493366, 9780521493369.

C. R. Johnson. Matrix Completion Problems: A Survey. 1990.

Rahul Kidambi, Vinod Nair, Sundararajan Sellamanickam, and S. Sathiya Keerthi. A structured
prediction approach for missing value imputation. CoRR, abs/1311.2137, 2013. URL http:
//arxiv.org/abs/1311.2137.

Senka Krivić, Sandor Szedmak, Hanchen Xiong, and Justus Piater. Learning missing edges via
kernels in partially-known graphs. In European Symposium on Artificial Neural Networks,
Computational Intelligence and Machine Learning, 2015. URL https://iis.uibk.ac.at/
public/papers/Krivic-2015-ESANN.pdf.

H. W. Kuhn and A. W. Tucker. Nonlinear programming. In Proceedings of the Second Berke-
ley Symposium on Mathematical Statistics and Probability, pages 481–492, Berkeley, Calif.,
1951. University of California Press. URL http://projecteuclid.org/euclid.bsmsp/
1200500249.

Harold W. Kuhn. Nonlinear programming: a historical view. ACM Sigmap Bulletin, pages 6–18,
1982. doi: 10.1145/1111278.1111279.

John Lafferty, Xiaojin Zhu, and Yan Liu. Kernel conditional random fields: Representation
and clique selection. In Proceedings of the Twenty-first International Conference on Machine
Learning, ICML ’04, pages 64–, New York, NY, USA, 2004. ACM. ISBN 1-58113-838-5. doi:
10.1145/1015330.1015337. URL http://doi.acm.org/10.1145/1015330.1015337.

Christoph H. Lampert and Matthew B. Blaschko. Structured prediction by joint kernel support
estimation. Mach. Learn., 77(2-3):249–269, December 2009. ISSN 0885-6125. doi: 10.1007/
s10994-009-5111-0. URL http://dx.doi.org/10.1007/s10994-009-5111-0.

Roderick J A Little and Donald B Rubin. Statistical Analysis with Missing Data. John Wiley
& Sons, Inc., New York, NY, USA, 1986. ISBN 0-471-80254-9.

Huma Lodhi, Craig Saunders, John Shawe-Taylor, Nello Cristianini, and Chris Watkins.
Text classification using string kernels. J. Mach. Learn. Res., 2:419–444, March 2002.
ISSN 1532-4435. doi: 10.1162/153244302760200687. URL http://dx.doi.org/10.1162/
153244302760200687.

Olvi L. Mangasarian. Exact 1-norm support vector machines via unconstrained convex differ-
entiable minimization. JOURNAL OF MACHINE LEARNING RESEARCH, 7:1517–1530,
2006.

J. Mercer. Functions of positive and negative type, and their connection with the theory of
integral equations. Philosophical Transactions of the Royal Society of London A: Mathemat-
ical, Physical and Engineering Sciences, 209(441-458):415–446, 1909. ISSN 0264-3952. doi:
10.1098/rsta.1909.0016.

Charles A. Micchelli and Massimiliano A. Pontil. On learning vector-valued functions. Neural
Comput., 17(1):177–204, January 2005. ISSN 0899-7667. doi: 10.1162/0899766052530802.
URL http://dx.doi.org/10.1162/0899766052530802.

http://arxiv.org/abs/1311.2137
http://arxiv.org/abs/1311.2137
https://iis.uibk.ac.at/public/papers/Krivic-2015-ESANN.pdf
https://iis.uibk.ac.at/public/papers/Krivic-2015-ESANN.pdf
http://projecteuclid.org/euclid.bsmsp/1200500249
http://projecteuclid.org/euclid.bsmsp/1200500249
http://doi.acm.org/10.1145/1015330.1015337
http://dx.doi.org/10.1007/s10994-009-5111-0
http://dx.doi.org/10.1162/153244302760200687
http://dx.doi.org/10.1162/153244302760200687
http://dx.doi.org/10.1162/0899766052530802

106 BIBLIOGRAPHY

Thomas M. Mitchell. Machine Learning. McGraw-Hill, Inc., New York, NY, USA, 1 edition,
1997. ISBN 0070428077, 9780070428072.

Sebastian Nowozin and Christoph H. Lampert. Structured learning and prediction in computer
vision. Found. Trends. Comput. Graph. Vis., 6(3–4):185–365, March 2011. ISSN
1572-2740. doi: 10.1561/0600000033. URL http://dx.doi.org/10.1561/0600000033.

Karl Pearson. Notes on regression and inheritance in the case of two parents. pages 240–242,
1895. URL https://books.google.at/books?id=60aL0zlT-90C.

Tomaso Poggio and Lorenzo Rosasco. Machine learning: a regularization approach, mit-9.520
lectures notes, 2015.

Tomaso Poggio, Ryan Rifkin, Sayan Mukherjee, and Partha Niyogi. General conditions for
predictivity in learning theory. Nature, 428(6981):419–422, Mar 2004. ISSN 0028-0836. doi:
10.1038/nature02341. URL http://dx.doi.org/10.1038/nature02341.

Manisha Pujari and Rushed Kanawati. Link prediction in multiplex networks. Networks and
Heterogeneous Media, 10(1):17–35, 2015. ISSN 1556-1801. doi: 10.3934/nhm.2015.10.17. URL
http://aimsciences.org/journals/displayArticlesnew.jsp?paperID=10837.

M. Mostafizur Rahman and Darryl N. Davis. Fuzzy unordered rules induction algorithm used
as missing value imputation methods for k-mean clustering on real cardiovascular data, 2013.

W. Rudin. Functional Analysis. International series in pure and applied mathematics. McGraw-
Hill, 2006. ISBN 9780070619883. URL https://books.google.de/books?id=l7XFfDmjp5IC.

Craig Saunders, Alexander Gammerman, and Volodya Vovk. Ridge regression learning algorithm
in dual variables. In Proceedings of the Fifteenth International Conference on Machine Learn-
ing, ICML ’98, pages 515–521, San Francisco, CA, USA, 1998. Morgan Kaufmann Publishers
Inc. ISBN 1-55860-556-8. URL http://dl.acm.org/citation.cfm?id=645527.657464.

John Shawe-Taylor and Nello Cristianini. Kernel Methods for Pattern Analysis. Cambridge
University Press, New York, NY, USA, 2004. ISBN 0521813972.

Morton Slater. Lagrange multipliers revisited. In Giorgio Giorgi and Tinne Hoff Kjeldsen,
editors, Traces and Emergence of Nonlinear Programming, pages 293–306. Springer Basel,
2014. ISBN 978-3-0348-0438-7. doi: 10.1007/978-3-0348-0439-4_14. URL http://dx.doi.
org/10.1007/978-3-0348-0439-4_14.

Xiaoyuan Su and Taghi M. Khoshgoftaar. A survey of collaborative filtering techniques. Adv. in
Artif. Intell., 2009:4:2–4:2, January 2009. ISSN 1687-7470. doi: 10.1155/2009/421425. URL
http://dx.doi.org/10.1155/2009/421425.

S. Szedmak, J. Shawe-Taylor, and E. Parado-Hernandez. Learning via linear operators: Max-
imum margin regression. In PASCAL Research Reports, http://eprints.pascal-network.org/.
2005.

S. Szedmak, E. Ugur, and J. Piater. Knowledge propagation and relation learning for predicting
action effects. In Intelligent Robots and Systems (IROS 2014), 2014 IEEE/RSJ International
Conference on, pages 623–629, Sept 2014a. doi: 10.1109/IROS.2014.6942624.

http://dx.doi.org/10.1561/0600000033
https://books.google.at/books?id=60aL0zlT-90C
http://dx.doi.org/10.1038/nature02341
http://aimsciences.org/journals/displayArticlesnew.jsp?paperID=10837
https://books.google.de/books?id=l7XFfDmjp5IC
http://dl.acm.org/citation.cfm?id=645527.657464
http://dx.doi.org/10.1007/978-3-0348-0439-4_14
http://dx.doi.org/10.1007/978-3-0348-0439-4_14
http://dx.doi.org/10.1155/2009/421425

BIBLIOGRAPHY 107

Sandor Szedmak, Emre Ugur, and Justus Piater. Knowledge Propagation and Relation Learning
for Predicting Action Effects. In IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 623–629. IEEE, 09 2014b. doi: 10.1109/IROS.2014.6942624. URL https:
//iis.uibk.ac.at/public/papers/Szedmak-2014-IROS.pdf.

Sandor Szedmak, Senka Krivić, and Hanchen Xiong. Learning Interrelations via Incomplete
Multivalued Mappings. 2015.

Xin Lu Tan. Notes on reproducing kernel hilbert space. 2014.

B. Taskar, C. Guestrin, and D. Koller. Max-margin markov networks. In NIPS 2003. 2003.

A.N. Tikhonov and V.I.A. Arsenin. Solutions of ill-posed problems. Scripta series in mathe-
matics. Winston, 1977. ISBN 9780470991244. URL https://books.google.at/books?id=
ECrvAAAAMAAJ.

François Trèves. Topological vector spaces, distributions and kernels. New York-London: Aca-
demic Press 1967. XVI, 565 p. (1967)., 1967.

I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun. Large margin methods for structured
and interdependent output variables. Journal of Machine Learning Research (JMLR), 6(Sep):
1453–1484, 2005a.

Ioannis Tsochantaridis, Thorsten Joachims, Thomas Hofmann, and Yasemin Altun. Large mar-
gin methods for structured and interdependent output variables. J. Mach. Learn. Res., 6:
1453–1484, December 2005b. ISSN 1532-4435. URL http://dl.acm.org/citation.cfm?id=
1046920.1088722.

V. Vapnik. Statistical Learning Theory. Wiley, 1998.

Peter Wagner. Skriptum zur vorlesung funktionenanalysis, 2004.

Grace Wahba. Reproducing kernel hilbert spaces-two brief reviews. 2003. URL http://www.
stat.wisc.edu/techreports/tr1079.pdf.

Jason Weston, Olivier Chapelle, André Elisseeff, Bernhard Schölkopf, and Vladimir Vapnik.
Kernel Dependency Estimation. In Suzanna Becker, Sebastian Thrun, Klaus Obermayer,
Suzanna Becker, Sebastian Thrun, and Klaus Obermayer, editors, NIPS, pages 873–880. MIT
Press, 2002. ISBN 0-262-02550-7. URL http://dblp.uni-trier.de/rec/bibtex/conf/
nips/WestonCESV02.

Jason Weston, Gökhan Bakir, Olivier Bousquet, Tobias Mann, William Stafford Noble, and
Bernhard Schölkopf. Joint kernel maps. In Gökhan H. Bakir, Thomas Hofmann, Bernhard
Schölkopf, Alexander J. Smola, Ben Taskar, and S. V. N. Vishwanathan, editors, Predicting
Structured Data (Neural Information Processing), chapter 4, pages 80–96. The MIT Press,
2007. ISBN 0262026171.

Hanchen Xiong, Sandor Szedmak, and Justus Piater. Scalable, Accurate Image Annotation with
Joint SVMs and Output Kernels. Neurocomputing, 2015. URL https://iis.uibk.ac.at/
public/papers/Xiong-2015-NEUCOM.pdf. To appear.

Peng Yifan. Illustration of the maximum margin hyperplane. http://blog.pengyifan.com/
tikz-example-svm-trained-with-samples-from-two-classes/. Accessed: 2015-12-11.

https://iis.uibk.ac.at/public/papers/Szedmak-2014-IROS.pdf
https://iis.uibk.ac.at/public/papers/Szedmak-2014-IROS.pdf
https://books.google.at/books?id=ECrvAAAAMAAJ
https://books.google.at/books?id=ECrvAAAAMAAJ
http://dl.acm.org/citation.cfm?id=1046920.1088722
http://dl.acm.org/citation.cfm?id=1046920.1088722
http://www.stat.wisc.edu/techreports/tr1079.pdf
http://www.stat.wisc.edu/techreports/tr1079.pdf
http://dblp.uni-trier.de/rec/bibtex/conf/nips/WestonCESV02
http://dblp.uni-trier.de/rec/bibtex/conf/nips/WestonCESV02
https://iis.uibk.ac.at/public/papers/Xiong-2015-NEUCOM.pdf
https://iis.uibk.ac.at/public/papers/Xiong-2015-NEUCOM.pdf
http://blog.pengyifan.com/tikz-example-svm-trained-with-samples-from-two-classes/
http://blog.pengyifan.com/tikz-example-svm-trained-with-samples-from-two-classes/

	Dedication
	Abstract
	Acknowledgments
	Contents
	Nomenclature
	List of Figures
	List of Tables
	Declaration
	Introduction
	Machine Learning
	Background
	Types of Problems and Tasks
	The Missing Value Problem
	The Learning Task

	Learning Algorithms
	Linear Classification
	Feature Space and Hypothesis Space
	Learning Linear Classifiers
	Linear Regression

	Risk Minimization
	Empirical Risk Minimization
	Regularization

	The Support Vector Machine
	Linearly Separable Case
	Non-linearly Separable Case
	Solving the Constrained Optimization Problem

	Appendix
	Constrained Optimization
	The Problem
	The Lagrangian Function
	The Lagrangian dual function
	Linear approximation interpretation
	Weak and Strong Duality
	Karush-Kuhn-Tucker Optimality Conditions

	Kernel Methods
	Motivation
	The Kernel Trick
	When Can the Kernel Trick Be Applied?
	Summary and Outlook

	A Glance at Kernel Theory
	Terminology - Kernel
	Reproducing Kernel Hilbert Spaces (RKHS)
	Outline
	Recap & Important Properties of Hilbert Spaces
	Functional Analysis perspective
	Positive Definite Kernels
	Feature Space Mappings
	Mercer Theorem - a Fourth View

	RKHS and Regularized Risk Minimization

	Structured Output Learning
	Introduction
	Background
	The Intuitive Approach
	The General Approach
	Learning with Joint Feature Maps
	Designing Joint Kernels

	Structured Support Vector Machine
	Linearly Separable Case
	Non-linearly Separable Case
	Arbitrary Loss Function
	Simplifications

	Maximum Margin Regression
	Problem Formulation
	Kernel Version

	Appendix
	The Tensor Product

	Structured Object Imputation
	Introduction
	Background
	Problem Statement
	Intuitive Approach
	Relational Learning Perspective
	Feature Representation

	Relational Learning Using MMR
	Problem Formulation
	Kernel Version
	Solving the Optimization Problem Using Frank-Wolfe

	Maximum Margin Multi Valued Mappings (MMMVM)
	Notation
	Defining the Swarm of Learners
	Kernel Version
	Solving the Optimization Problem Using Frank-Wolfe

	Application Example - Missing Edges in Multiplex Networks
	Details about the Dataset
	Application of the MMR & MMMVM
	Experimental Setup and Results

	Appendix
	The Frank-Wolfe Algorithm
	Problem Statement
	Algorithm
	Computational Complexity

	Conclusion
	Bibliography

